首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么在训练tensorflow对象检测ssd移动网络模型时我的训练损失很高

在训练tensorflow对象检测SSD移动网络模型时,训练损失很高可能是由于以下几个原因导致的:

  1. 数据集问题:训练模型的数据集可能存在一些问题,如标注错误、样本不平衡等。这可能导致模型在训练过程中难以收敛,从而导致训练损失较高。建议检查数据集的质量,并进行必要的数据预处理和增强。
  2. 学习率设置不合适:学习率是训练过程中一个重要的超参数,过高或过低的学习率都可能导致训练损失较高。建议尝试调整学习率的大小,可以采用学习率衰减策略或使用自适应学习率算法,如Adam优化器。
  3. 模型结构问题:SSD移动网络模型的结构可能不适合当前的任务或数据集。可以尝试调整模型的网络结构,增加或减少网络层数、调整卷积核大小等,以适应当前任务的特点。
  4. 训练参数设置不合理:训练过程中的一些参数设置可能不合理,如批量大小、正则化参数等。可以尝试调整这些参数,以找到更合适的取值。
  5. 训练样本不足:如果训练样本数量较少,模型可能难以充分学习到数据的特征,导致训练损失较高。建议增加训练样本数量,或者使用数据增强技术来扩充数据集。
  6. 训练过程中的错误:在训练过程中可能存在一些错误,如错误的损失函数、错误的优化器选择等。建议仔细检查训练代码,确保没有错误的设置。

总之,训练损失较高可能是由于数据集问题、学习率设置、模型结构、训练参数、训练样本不足或训练过程中的错误等多种因素导致的。需要仔细分析和调试,逐步优化训练过程,以降低训练损失。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

X射线图像中的目标检测

每天有数百万人乘坐地铁、民航飞机等公共交通工具,因此行李的安全检测将保护公共场所免受恐怖主义等影响,在安全防范中扮演着重要角色。但随着城市人口的增长,使用公共交通工具的人数逐渐增多,在获得便利的同时带来很大的不安全性,因此设计一种可以帮助加快安全检查过程并提高其效率的系统非常重要。卷积神经网络等深度学习算法不断发展,也在各种不同领域(例如机器翻译和图像处理)发挥了很大作用,而目标检测作为一项基本的计算机视觉问题,能为图像和视频理解提供有价值的信息,并与图像分类、机器人技术、人脸识别和自动驾驶等相关。在本项目中,我们将一起探索几个基于深度学习的目标检测模型,以对X射线图像中的违禁物体进行定位和分类为基础,并比较这几个模型在不同指标上的表现。

02

OpenCV中支持的人脸检测方法整理与汇总

自从VJ在2004发表了关于级联分类器实时对象检测的论文以后,级联分类器就在OpenCV中落地生根了,一段时间,特别是OpenCV3.x版本中基于级联分类器的人脸检测一直是标配,虽然大家刚开始看了例子之后觉得这个是一个很实用的功能,但是在实际实用中级联分类器的人脸检测方法则是频频翻车,我自己曾经移植到Android上面玩过,日常就是两个字“翻车”,很多时候都无法达到开发者想要的稳定性与实时性能。但是这个并不妨碍它作为OpenCV3.x的一大关注点,还产生了无数的Demo演示程序。但是如今已经是OpenCV4.x的时代了,那些基于级联分类器的人脸检测演示看上去有点不合时宜,而且效果惨遭以深度神经网络模型人脸检测技术的毒打。OpenCV4中的人脸检测现在支持多种深度神经网络模型,与OpenCV3中的传统人脸检测方法形成鲜明对比。下面我们就来一一介绍一下从OpenCV3到OpenCV4中不同人脸检测技术。

04

【一统江湖的大前端(9)】TensorFlow.js 开箱即用的深度学习工具

TensorFlow是Google推出的开源机器学习框架,并针对浏览器、移动端、IOT设备及大型生产环境均提供了相应的扩展解决方案,TensorFlow.js就是JavaScript语言版本的扩展,在它的支持下,前端开发者就可以直接在浏览器环境中来实现深度学习的功能,尝试过配置环境的读者都知道这意味着什么。浏览器环境在构建交互型应用方面有着天然优势,而端侧机器学习不仅可以分担部分云端的计算压力,也具有更好的隐私性,同时还可以借助Node.js在服务端继续使用JavaScript进行开发,这对于前端开发者而言非常友好。除了提供统一风格的术语和API,TensorFlow的不同扩展版本之间还可以通过迁移学习来实现模型的复用(许多知名的深度学习模型都可以找到python版本的源代码),或者在预训练模型的基础上来定制自己的深度神经网络,为了能够让开发者尽快熟悉相关知识,TensorFlow官方网站还提供了一系列有关JavaScript版本的教程、使用指南以及开箱即用的预训练模型,它们都可以帮助你更好地了解深度学习的相关知识。对深度学习感兴趣的读者推荐阅读美国量子物理学家Michael Nielsen编写的《神经网络与深度学习》(英文原版名为《Neural Networks and Deep Learning》),它对于深度学习基本过程和原理的讲解非常清晰。

02

性能达到SOTA的CSP对象检测网络

早期传统的对象检测方法都是基于滑动窗口的特征分类,自从深度学习来了之后就产生很多基于深度神经网络效果特别好的对象检测网络模型,比如SSD、YOLO、Faster-RCNN等,但是这些模型都有个缺陷就是依赖anchor设置,总的来说anchor设置对模型最终精度有比较明显的影响。本文中作者通过深度神经网络提取高级抽象语义描述把对象检测中图像上各个对象抽象为BLOB对象检测的中心特征点,同时通过卷积神经网络预测每个中心特征点尺度范围,这样就实现了anchor-free的对象检测网络构建,在几个benchmark对象检测数据集上都取得跟anchor-base网络相同甚至更好的效果。而且针对交叉数据集验证表明该方法有杰出的泛化能力。

04

从背景介绍到未来挑战,一文综述移动和无线网络深度学习研究

选自arXiv 作者:Chaoyun Zhang等 机器之心编译 近来移动通信和 5G 网络等快速发展,它们的调控与配置因为充满了多样性和动态变化而面临非常多的挑战。因此近来很多研究科学家开始利用机器学习及深度学习加强移动和无线网络的配置,并帮助应对数据量和算法驱动的应用程序的增长。本论文基本是首篇综述深度学习及无线网络交叉学科研究面貌的调研,读者可以阅读原论文全面了解该新兴交叉学科。 互联网连接的移动设备正在渗透生活、工作和娱乐的各个方面。智能手机数量不断增加以及不断增多的应用程序引发了移动数据流量的激增

05

Thermal Object Detection using Domain Adaptation through

最近发生的一起自动驾驶车辆致命事故引发了一场关于在自动驾驶传感器套件中使用红外技术以提高鲁棒目标检测可见性的辩论。与激光雷达、雷达和照相机相比,热成像具有探测红外光谱中物体发出的热差的优点。相比之下,激光雷达和相机捕捉在可见光谱,和不利的天气条件可以影响其准确性。热成像可以满足传统成像传感器对图像中目标检测的局限性。提出了一种用于热图像目标检测的区域自适应方法。我们探讨了领域适应的多种概念。首先,利用生成式对抗网络,通过风格一致性将低层特征从可见光谱域转移到红外光谱域。其次,通过转换训练好的可见光光谱模型,采用具有风格一致性的跨域模型进行红外光谱中的目标检测。提出的策略在公开可利用的热图像数据集(FLIR ADAS和KAIST多光谱)上进行评估。我们发现,通过域适应将源域的低层特征适应到目标域,平均平均精度提高了约10%。

01
领券