首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么在3NF中没有给出例子?

在3NF(第三范式)中没有给出例子的原因是因为3NF是一种规范化(Normalization)的概念,它主要用于设计关系型数据库中的表结构,而不是用于描述具体的数据实例。

第三范式(3NF)是关系型数据库设计中的一种规范化形式,它要求一个关系型数据库中的每个非主属性都不依赖于其他非主属性,即非主属性之间不存在传递依赖关系。这样设计的数据库表结构可以减少数据冗余,提高数据的一致性和完整性。

举个例子来说,假设我们有一个学生信息表,其中包含学生的学号、姓名、年龄和班级。如果我们将班级作为一个属性存储在学生信息表中,那么一个班级可能对应多个学生,这样就会导致数据冗余。为了避免这种情况,我们可以将班级信息单独拆分成一个班级表,然后在学生信息表中使用班级的外键来关联两个表。这样就可以避免数据冗余,并且提高了数据的一致性。

在这个例子中,3NF的应用是将非主属性(班级)独立出来,避免了数据冗余和传递依赖。但具体的数据实例(具体的学生信息)并没有提供,因为3NF是一种规范化的概念,它适用于各种关系型数据库设计,而不是针对特定的数据实例。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云数据库(TencentDB):提供高性能、可扩展的云数据库服务,支持多种数据库引擎,如MySQL、SQL Server、MongoDB等。详情请参考:https://cloud.tencent.com/product/cdb
  • 腾讯云云服务器(CVM):提供弹性、安全、稳定的云服务器实例,支持多种操作系统和应用场景。详情请参考:https://cloud.tencent.com/product/cvm
  • 腾讯云人工智能(AI):提供丰富的人工智能服务,包括图像识别、语音识别、自然语言处理等。详情请参考:https://cloud.tencent.com/product/ai
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 大数据数据分析架构探究

    从范式角度来讲,维度建模是以2NF的方式来描述数据,实体关系建模是以3NF的方式进行数据描述,由于分布式数据架构的兴起,使得维度建模得到了技术支持。换句话讲,现在数据增长的速度,对于现在的数据技术架构不再是技术瓶颈。对于数据的存储运用完全用2NF的方式表达,甚至1NF都有可能。当然现在有一种趋势就是2NF到3NF转变的过程,这方面与Data Vault的设计初衷是一致的,试图在2NF和3NF寻找一个合适的数据整合方案。 从信息传播的角度来讲,1NF的方式传播信息是最有效的,但是也是最冗余的,但对于信息存储是一个挑战。现阶段来讲2NF成为现在互联网企业主要的存储方式,因为数据增长速度,数据关系的复杂度,与数据的计算能力与数据的存储方式相匹配。但当数据的增长速度和数据关系的复杂度这两个变量发生指数级变化的时候,2NF的方式的存储似乎就不太适合,3NF的数据存储方式必然是选择,甚至于更高范式。但范式越高,信息的专业程度越大。解释一下范式越高,信息越专业,比如:我们平常的生活对话大部分都是2NF的,只有大人与刚刚学会说话的小孩会1NF的,因为我们要做大量的解释。当我们去工作的时候,一般你是具有3NF的知识才能,才能与工作的其他人进行沟通,那一篇博士论文呢,那所处的范式那就更高啦。 现阶段数据的存储还是人与机器或者人与人之间的信息记录,用3NF或者BCNF能够解决。试问下当机器与机器之间交流将来是什么样的呢,还是3NF的吗?是3NF还好,我们还可以存储与整合加以利用和分析,不是3NF的呢,个人觉得很可能不是,因为机器的设计工作超过3NF,更何况机器与机器交流信息呢。我们如何处理这些信息,然后加以有效利用和分析,值得去深究!

    02

    第一范式、第二范式、第三范式[通俗易懂]

    范式:英文名称是 Normal Form,它是英国人 E.F.Codd(关系数据库的老祖宗)在上个世纪70年代提出关系数据库模型后总结出来的,范式是关系数据库理论的基础,也是我们在设计数据库结构过程中所要遵循的规则和指导方法。目前有迹可寻的共有8种范式,依次是:1NF,2NF,3NF,BCNF,4NF,5NF,DKNF,6NF。通常所用到的只是前三个范式,即:第一范式(1NF),第二范式(2NF),第三范式(3NF)。下面就简单介绍下这三个范式。 ◆ 第一范式(1NF):强调的是列的原子性,即列不能够再分成其他几列。 考虑这样一个表:【联系人】(姓名,性别,电话) 如果在实际场景中,一个联系人有家庭电话和公司电话,那么这种表结构设计就没有达到 1NF。要符合 1NF 我们只需把列(电话)拆分,即:【联系人】(姓名,性别,家庭电话,公司电话)。1NF 很好辨别,但是 2NF 和 3NF 就容易搞混淆。 ◆ 第二范式(2NF):首先是 1NF,另外包含两部分内容,一是表必须有一个主键;二是没有包含在主键中的列必须完全依赖于主键,而不能只依赖于主键的一部分。 考虑一个订单明细表:【OrderDetail】(OrderID,ProductID,UnitPrice,Discount,Quantity,ProductName)。 因为我们知道在一个订单中可以订购多种产品,所以单单一个 OrderID 是不足以成为主键的,主键应该是(OrderID,ProductID)。显而易见 Discount(折扣),Quantity(数量)完全依赖(取决)于主键(OderID,ProductID),而 UnitPrice,ProductName 只依赖于 ProductID。所以 OrderDetail 表不符合 2NF。不符合 2NF 的设计容易产生冗余数据。 可以把【OrderDetail】表拆分为【OrderDetail】(OrderID,ProductID,Discount,Quantity)和【Product】(ProductID,UnitPrice,ProductName)来消除原订单表中UnitPrice,ProductName多次重复的情况。 ◆ 第三范式(3NF):首先是 2NF,另外非主键列必须直接依赖于主键,不能存在传递依赖。即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况。 考虑一个订单表【Order】(OrderID,OrderDate,CustomerID,CustomerName,CustomerAddr,CustomerCity)主键是(OrderID)。 其中 OrderDate,CustomerID,CustomerName,CustomerAddr,CustomerCity 等非主键列都完全依赖于主键(OrderID),所以符合 2NF。不过问题是 CustomerName,CustomerAddr,CustomerCity 直接依赖的是 CustomerID(非主键列),而不是直接依赖于主键,它是通过传递才依赖于主键,所以不符合 3NF。 通过拆分【Order】为【Order】(OrderID,OrderDate,CustomerID)和【Customer】(CustomerID,CustomerName,CustomerAddr,CustomerCity)从而达到 3NF。 第二范式(2NF)和第三范式(3NF)的概念很容易混淆,区分它们的关键点在于,2NF:非主键列是否完全依赖于主键,还是依赖于主键的一部分;3NF:非主键列是直接依赖于主键,还是直接依赖于非主键列。

    03

    通俗理解数据库范式

    数据库范式是数据库设计中必不可少的知识,没有对范式的理解,就无法设计出高效率、优雅的数据库。甚至设计出错误的数据库。而想要理解并掌握范式却并不是那么容易。教科书中一般以关系代数的方法来解释数据库范式。这样做虽然能够十分准确的表达数据库范式,但比较抽象,不太直观,不便于理解,更难以记忆。   本文用较为直白的语言介绍范式,旨在便于理解和记忆,这样做可能会出现一些不精确的表述。但对于初学者应该是个不错的入门。我写下这些的目的主要是为了加强记忆,其实我也比较菜,我希望当我对一些概念生疏的时候,回过头来看看自己写的笔记,可以快速地进入状态。如果你发现其中用错误,请指正。 下面开始进入正题:

    02
    领券