首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

卷积神经网络图解_卷积神经网络分类

稀疏连接 输出(右边矩阵中红色标记的元素 30)仅仅依赖于这9个特征(左边矩阵红色方框标记的区域),看上去只有这9个输入特征与输出相连接,其它像素对输出没有任何影响。...池化层——无需学习参数 卷积神经网络案例 梯度下降 经典的神经网络 LeNet-5 ,AlexNet, VGG, ResNet, Inception 疑问: 请教下为什么随着网络的加深,图像的高度和宽度都在以一定的规律不断缩小...当网络退化时,浅层网络能够达到比深层网络更好的训练效果,这时如果我们把低层的特征传到高层,那么效果应该至少不比浅层的网络效果差,或者说如果一个VGG-100网络在第98层使用的是和VGG-16第14层一模一样的特征...从信息论的角度讲,由于DPI(数据处理不等式)的存在,在前向传输的过程中,随着层数的加深,Feature Map包含的图像信息会逐层减少,而ResNet的直接映射的加入,保证了深层的网络一定比浅层包含更多的图像信息...在这个例子中,只需要训练softmax层的权重,把前面这些层的权重都冻结。 神经网络应用 分类定位 目标点检测 滑动窗口的卷积实现 为什么要将全连接层转化成卷积层?有什么好处?

73610

提高模型性能,你可以尝试这几招...

(hidden layer),这里只添加了一个具有N_HIDDEN个神经元并使用ReLU激活函数的全连接层(Dense)。...事实上并非如此,经过尝试,比如在隐藏层数为5时,在训练集、验证集和测试集上的准确率分别为96.5%、95.99%、96.05%,而隐藏层数增加到10时的准确率依次为95.41%、95.47%、95.14%...使用dropout策略 简单说,dropout策略就是随机丢弃一些神经元节点,不参与计算,为什么这种策略能够奏效,在Andrew NG的改善深层神经网络:超参数调试、正则化以及优化课程中有很清晰的讲解:...对于图像相关的神经网络,通常卷积神经网络可以取得比全连接网络更好的效果,而对于文本处理、语音识别等,则循环神经网络RNN更加有效。...本文也没有对其中涉及的理论有过多的深入,有兴趣的朋友推荐大家看一看Andrew NG的深度学习课程改善深层神经网络:超参数调试、正则化以及优化,在网易云课堂上是免费的课程。

1.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    神经网络,激活函数,反向传播

    Xavier初始化方法:假设某全连接层的输入个数为a,输出个数为b,Xavier随机初始化将使该层中权重参数的每个元素都随机采样于均匀分布: ?...但有一个例外:在二分类的问题中,对于输出层,因为?的值是 0 或 1,所以想让?^的数值介于0和1之间,而不是在-1和+1之间。所以需要使用sigmoid激活函数。 ?...的区间变动很大的情况下,激活函数的导数或者激活函数的斜率都会远大于0,在程序实现就是一个 if-else 语句,而 sigmoid 函数需要进行浮点四则运算,在实践中,使用 ReLu 激活函数神经网络通常会比使用...3.3.3 为什么使用激活函数 如果你使用线性激活函数或者没有使用一个激活函数,那么无论你的神经网络有多少层一直在做的只是计算线性函数,所以不如直接去掉全部隐藏层。...对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),这种现象称为饱和,从而无法完成深层网络的训练。

    77800

    【深度学习基础】线性神经网络 | softmax回归的简洁实现

    它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。...本节与在【深度学习基础】线性神经网络 | softmax回归的从零开始实现 中一样,继续使用Fashion-MNIST数据集,并保持批量大小为256。...深度学习基础】线性神经网络 | softmax回归 所述,softmax回归的输出层是一个全连接层。...因此,为了实现我们的模型,我们只需在Sequential中添加一个带有10个输出的全连接层。同样,在这里Sequential并不是必要的,但它是实现深度模型的基础。...但是,我们没有将softmax概率传递到损失函数中,而是在交叉熵损失函数中传递未规范化的预测,并同时计算softmax及其对数,这是一种类似"LogSumExp技巧"的聪明方式。

    10110

    激活函数、正向传播、反向传播及softmax分类器,一篇就够了!

    Xavier初始化方法:假设某全连接层的输入个数为a,输出个数为b,Xavier随机初始化将使该层中权重参数的每个元素都随机采样于均匀分布: U[−6a+b,6a+b]U[-\sqrt{\frac{6...但有一个例外:在二分类的问题中,对于输出层,因为?的值是 0 或 1,所以想让?^的数值介于0和1之间,而不是在-1和+1之间。所以需要使用sigmoid激活函数。 ?...3.3.3 为什么使用激活函数 如果你使用线性激活函数或者没有使用一个激活函数,那么无论你的神经网络有多少层一直在做的只是计算线性函数,所以不如直接去掉全部隐藏层。...对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况(在sigmoid接近饱和区时,变换太缓慢,导数趋于0,这种情况会造成信息丢失),这种现象称为饱和,从而无法完成深层网络的训练。...x_2,x_3,x_4x1​,x2​,x3​,x4​ ,softmax回归的输出层也是一个全连接层。

    1.2K30

    深度神经网络总结

    大家好,又见面了,我是你们的朋友全栈君。...上标3代表线性系数w所在的层数,而下标对应的是输出的第三层索引2和输入的第二层索引4。你也许会问,为什么不是w342, 呢?...在现有的DNN模型中,将输出层第i个神经元的激活函数定义为如下形式: softmax激活函数在前向传播算法时的使用:假设输出层为三个神经元,而未激活的输出为3,1和-3,求出各自的指数表达式为:20,2.7...如果使用上式的损失函数,进行反向传播算法时,流程和没有正则化的反向传播算法完全一样,区别仅仅在于进行梯度下降法时,W的更新公式。...反向传播算法中,W的梯度下降更新公式为: 加入L2正则化以后,迭代更新公式变成: 注意到上式中的梯度计算中 我忽略了,因为α是常数,而除以m也是常数,所以等同于用了新常数α来代替 。

    1.4K21

    深度学习从小白到入门 —— 基于keras的深度学习基本概念讲解

    在上图中,交叉熵被表示为一个具有两个权重的函数。 而学习速率,即在梯度下降中的步伐大小。...其抑制两头,对中间细微变化敏感,因此sigmoid函数作为最简单常用的神经网络激活层被使用。...有利于降低模型收敛到局部最优的风险,而SGD容易收敛到局部最优,如果下面代码中的optimizer改成SGD的化,在一次epoch后就acc值不会改变了,陷入局部最优 # 构建一个五层sigmod全连接神经网络...但是,对于深层网络,sigmoid函数反向传播时,很容易就会出现梯度消失的情况从而无法完成深层网络的训练。在sigmoid接近饱和区时,变换非常缓慢,导数趋于0,减缓收敛速度。 5....ReLU的使用解决了sigmoid梯度下降慢,深层网络的信息丢失的问题。 ReLU在训练时是非常脆弱的,并且可能会“死”。

    68720

    从LeNet-5到DenseNet

    1、生物神经系统中的连接是稀疏的; 2、如果一个数据集的概率分布可以由一个很大、很稀疏的深度神经网络表示时,那么通过,分析最后一层激活值的相关统计和对输出高度相关的神经元进行聚类,可以逐层地构建出一个最优网络拓扑结构...在传统的神经网络中,使用矩阵乘法来建立输入与输出之间的连接关系,其中参数矩阵中的每一个单独的参数都描述了一个输入单元和输出单元的交互,我们使用的kernel的尺寸是远远小于图片的尺寸的,在feature...论文中说:模型在分类器之前使用了平均池化来替代全连接层的idea来自于NIN,在最后加入一层全连接层的为了使得模型在其他数据集上进行finetune时更方便。...值得注意的是,网络中有三个softmax,这是为了减轻在深层网络反向传播时梯度消失的影响,也就是说,整个网络的loss是由三个softmax共同组成的,这样在反向传播的时候,即使最后一个softmax传播回来的梯度消失了...但是也并不是适用于所有的卷积方式,论文说明,在实践中在feature map为12x12~20x20时效果较好,也就是在较深层使用时效果好,浅层不太行,并且使用7x1和1x7卷积的串联可以得到很好的效果

    1K70

    面试宝典之深度学习面试题(上)

    特 别是现在需要在移动设备上进行AI应用计算(也叫推断), 模型参数规模必须更小, 所以出现很多减少握手规模的卷积形式, 现在主流网络架构大都如此 3.全连接层的作用: 答:在CNN结构中,经多个卷积层和池化层后...,连接着1个或1个以上的全连接层.与MLP类似,全连接层中的每个神经元与其前一层的所有神经元进行中全连接.全连接层可以整合卷积层或者池化层中具有类别区分性的局部信息.为了提升 CNN网络性能,全连接层每个神经元的激励函数一般采用...最后一层全连接层的输出值被传递给一个输出,可以采用softmax逻辑回归(softmax regression)进行 分 类,该层也可 称为 softmax层(softmax layer)....答:relu函数:梯度弥散没有完全解决,神经元死亡问题 解决方案:LeakyRelu 解决了神经死亡问题 Maxout:参数较多,本质上是在输出结果上又增加了一层 克服了relu的缺点,比较提倡使用 10...,很容易验证,无论你神经网络多少层, 输出都是输入的线性组合,与没有隐藏层效果相当,这种情况就是最原始的感知机了 正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合

    83520

    从AlexNet理解卷积神经网络的一般结构

    所以我们送入SVM分类器中的其实HOG提取出来的特征,而不是图片的本身。而在卷积神经网络中,大部分特征提取的工作在卷积层自动完成了,越深越宽的卷积层一般来说就会有更好的表达能力。...激活层 池化操作用于卷积层内,而激活操作则在卷积层和全连接层都会用到,由于之前我已经写过关于激活函数的博客,在这里只简单说明下,具体内容大家可以在 理解激活函数在神经网络模型构建中的作用这个博客中了解。...深层网络中一般使用ReLU多段线性函数作为激活函数,如下图所示,其作用在于增加非线性。 ?...全连接层 全连接层的作用 CNN中的全连接层与浅层神经网络中的作用是一样的,负责逻辑推断,所有的参数都需要学习得到。...这些数的排布其实就相当于传统神经网了里面的第一个隐藏层而已,通过R1后,后面的链接方式和ANN就没有区别了。要学习的参数也从卷积核参数变成了全连接中的权系数。

    1.3K61

    机器学习之卷积神经网络(三)

    另一类卷积是把卷积层作为一层,而池化层单独作为一层。人们在计算神经网络有多少层时,通常只统计具有权重和参数的层。因为池化层没有权重和参数,只有一些超参数。...虽然你在阅读网络文章或研究报告时,你可能会看到卷积层和池化层各为一层的情况,这只是两种不同的标记术语。一般我在统计网络层数时,只计算具有权重的层,也就是把CONV1和POOL1作为Layer1。...下一层含有120个单元,这就是我们第一个全连接层,标记为FC3。这400个单元与120个单元紧密相连,这就是全连接层。它很像我们在第一和第二门课中讲过的单神经网络层,这是一个标准的神经网络。...在神经网络中,另一种常见模式就是一个或多个卷积后面跟随一个池化层,然后一个或多个卷积层后面再跟一个池化层,然后是几个全连接层,最后是一个softmax。这是神经网络的另一种常见模式。...有几点要注意,第一,池化层和最大池化层没有参数;第二卷积层的参数相对较少,前面课上我们提到过,其实许多参数都存在于神经网络的全连接层。

    46820

    从AlexNet剖析-卷积网络CNN的一般结构

    中的卷积层 二、池化层与激活层 1.池化层 2.激活层 三、全连接层 1.全连接层的作用 2.AlexNet中的全连接层 四、Softmax...而在CNN中,特征提取的工作在卷积层自动完成了,越深越宽的卷积层一般来说就会有更好的表达能力,所以CNN是一种端对端的训练,我们输入的就是原始的数据,而不是人工提取的特征....2.激活层 池化操作用于卷积层内,而激活操作则在卷积层和全连接层都会用到,在这里只简单说明下,具体内容大家可以在 理解激活函数在神经网络模型构建中的作用这个博客中了解。...深层网络中一般使用ReLU多段线性函数作为激活函数,如下图所示,其作用在于增加非线性。 ?...三 全连接层: 1.全连接层的作用 CNN中的全连接层与传统神经网络中的作用是一样的,负责逻辑推断,所有的参数都需要学习得到。

    2.6K50

    深度学习500问——Chapter03:深度学习基础(2)

    3.3 超参数 3.3.1 什么是超参数 超参数:在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。...假设我们有一个数组, 表示 中的第 个元素,那么这个元素的 softmax 值就是: 从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别...表达式是否解决学习缓慢的问题并不明显。实际上,甚至将这个定义看作是代价函数也不是显而易见的!在解决学习缓慢前,我们来看看交叉熵为何能够解释成一个代价函数。...我这⾥不再给出详细的过程,你可以轻易验证得到: ​ 再⼀次, 这避免了⼆次代价函数中类似 项导致的学习缓慢。...其表达形式如下: 其中 表示FCN(全连接层)之前的特征, 表示 个类别的特征中心, 表示mini-batch的大小.

    14610

    【经典回顾】静态结构不能满足模型部署性能需求?微软提出动态卷积结构,Top-1准确率提高2.9%!(附复现代码)

    然而,当计算约束变得极低时,即使是SOTA的高效CNN(如MobileNetV3)也会出现显著的性能下降。...如上图所示,动态卷积使用一组并行卷积核,而不是每层只使用一个卷积核。 对于每个单独的输入x,这些卷积核是通过基于输入的注意力权重动态聚合的,即。bias是使用相同的注意聚合的,即。...然后,使用两个全连接层(它们之间有一个ReLU)和Softmax来生成卷积核。第一个全连接层将维度缩小四倍,第二个全连接层的输出通道数为卷积核的数量。...Dynamic convolution at different layers 上表展示了在不同层使用动态卷积的结果,可以看出,对所有层都使用动态卷积的效果比较好。...然而,DY-MobileNetV3在不使用SE时的实验结果下降的更少一些,使用0.7%。 3.3.

    66020

    caffe+报错︱深度学习参数调优杂记+caffe训练时的问题+dropoutbatch Normalization

    . 2、为什么Caffe中引入了这个inner_num,inner_num等于什么 从FCN全卷积网络的方向去思考。...3、在标签正确的前提下,如果倒数第一个全连接层num_output > 实际的类别数,Caffe的训练是否会报错?...我找了半天没有找到在layers层中Input应该替换为什么类型的type,因此我的deploy还是使用的layer结构,不过能够正常运行。...2、试试两个模型或者多个模型concat 比如,两种不同分辨率的图像数据集,分别训练出网络模型a和网络模型b,那么将a和b的瓶颈层concat在一起,用一个全连接层(或者随便你怎么连,试着玩玩没坏处)连起来...Sigmoid函数由于其可微分的性质是传统神经网络的最佳选择,但在深层网络中会引入梯度消失和非零点中心问题。Tanh函数可避免非零点中心问题。ReLU激励函数很受欢迎,它更容易学习优化。

    1.5K60

    深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)

    即:特征图中的每个单元与C3中相对应特征图的2*2邻域相连接,有16个5*5的特征图,输出得到的特征图大小为5*5*16。没有需要学习的参数。  5、F5层是一个全连接层 有120个单元。...4、模块六、七、八 模块六和七就是所谓的全连接层了,全连接层就和人工神经网络的结构一样的,结点数超级多,连接线也超多, 所以这儿引出了一个dropout层,来去除一部分没有足够激活的层。...但是,计算机软硬件对非均匀稀疏数据的计算效率很差, 所以在AlexNet中又重新启用了全连接层,目的是为了更好地优化并行运算。...但是,实际在最后还是加了一个全连接层,主要是为了方便finetune;  (3)虽然移除了全连接,但是网络中依然使用了Dropout ;  (4)为了避免梯度消失,网络额外增加了2个辅助的softmax...由下面公式: a[l+2] 加上了 a[l]的残差块,即:残差网络中,直接将a[l]向后拷贝到神经网络的更深层,在ReLU非线性激活前面 加上a[l],a[l]的信息直接达到网络深层。

    2.9K71

    最基本的25道深度学习面试问题和答案

    在反向传播中,神经网络在损失函数的帮助下计算误差,从误差的来源向后传播此误差(调整权重以更准确地训练模型)。 4、什么是数据规范化(Normalization),我们为什么需要它?...这个模型有一个可见的输入层和一个隐藏层——只是一个两层的神经网络,可以随机决定一个神经元应该打开还是关闭。节点跨层连接,但同一层的两个节点没有连接。 6、激活函数在神经网络中的作用是什么?...超参数在机器学习的上下文中,超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。...当学习率太低时,模型的训练将进展得非常缓慢,因为只对权重进行最小的更新。它需要多次更新才能达到最小值。如果非常小可能最终的梯度可能不会跳出局部最小值,导致训练的结果并不是最优解。...当坡度趋向于指数增长而不是衰减时,它被称为“爆炸梯度”。梯度问题导致训练时间长,性能差,精度低。 23、深度学习中Epoch、Batch和Iteration的区别是什么?

    87310

    《Scikit-Learn与TensorFlow机器学习实用指南》 第10章 人工神经网络

    除了输出层之外的每一层包括偏置神经元,并且全连接到下一层。当人工神经网络有两个或多个隐含层时,称为深度神经网络(DNN)。 ?...两个隐藏的层几乎相同:它们只是它们所连接的输入和它们包含的神经元的数量不同。 输出层也非常相似,但它使用 softmax 激活函数而不是 ReLU 激活函数。...函数等同于应用 SOFTMAX 激活函数,然后计算交叉熵,但它更高效,它妥善照顾的边界情况下,比如 logits 等于 0,这就是为什么我们没有较早的应用 SOFTMAX 激活函数。...实际上已经表明,只有一个隐藏层的 MLP 可以建模甚至最复杂的功能,只要它具有足够的神经元。 长期以来,这些事实说服了研究人员,没有必要调查任何更深层次的神经网络。...为什么通常使用逻辑斯蒂回归分类器而不是经典感知器(即使用感知器训练算法训练单层的线性阈值单元)?你如何调整感知器使之等同于逻辑回归分类器? 为什么激活函数是训练第一个 MLP 的关键因素?

    86031

    【最新TensorFlow1.4.0教程02】利用Eager Execution 自定义操作和梯度 (可在 GPU 运行)

    下面的例子是我用TensorFlow 1.4的Eager Execution特性编写的Softmax激活函数及其梯度,这个自定义的操作可以像老版本中的tf.nn.softmax操作一样使用,并且在梯度下降时可以使用自定义的梯度函数...神经网络结构 ? 本教程使用具有1个隐藏层的MLP作为网络的结构,使用RELU作为隐藏层的激活函数,使用SOFTMAX作为输出层的激活函数。...从图中可以看出,网络具有输入层、隐藏层和输出层一共3层,但在代码编写时,会将该网络看作由2个层组成(2次变换): Layer 0: 一个Dense Layer(全连接层),由输入层进行线性变换变为隐藏层...]的矩阵,是全连接层线性变换的参数 b_0: 形状为[hidden_dim]的矩阵,是全连接层线性变换的参数(偏置) Layer 1: 一个Dense Layer(全连接层),由隐藏层进行线性变换为输出层...softmax: 使用SOFTMAX激活函数进行激活 W_1: 形状为[hidden_dim, output_dim]的矩阵,是全连接层线性变换的参数 b_1: 形状为[output_dim]的矩阵,是全连接层线性变换的参数

    1.7K60

    机器学习-4:DeepLN之CNN解析

    卷积神经网络是在神经网络的理论基础上形成的深度学习网络,它是一种特殊的多层神经网络。而传统的神经网络是一个全连接的网络结构(后面会提到),它上一层的每一个神经元与下一层的每一个神经元均有连接。...),那么全连接网络就要学100×100×100个参数,即100万个权重参数,这样的网络结构在使用BP算法训练的时候,不但训练速度慢,而且需要的训练样本的数量也越多,若训练样本数量不足,会产生过拟合现象,...3、传统神经网络因为与输入数据是全连接的,无法识别训练数据中的局部区域特征,可是卷积神经网络可以单独学习识别该局部区域特征。...在CNN里,这叫做权值更享,那么为什么说减少训练参数呢? 没有对比不能说少了或者多了,在上面的为什么提出cnn中已经解释了。 2....目前由于全连接层参数冗余(仅全连接层参数就可占整个网络参数80%左右),像ResNet和GoogLeNet等均用全局平均池化(GAP)取代FC来融合学到的深度特征,最后用softmax等损失函数作为网络目标函数训练模型

    42310
    领券