首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

为什么这个决策树在每一步的值不等于样本的数量?

决策树是一种常用的机器学习算法,用于解决分类和回归问题。它通过一系列的决策规则对输入数据进行划分,最终得到一个能够对新数据进行预测的模型。

在决策树的每一步,计算的值不等于样本的数量是因为决策树算法在划分数据时考虑了其他指标,而不仅仅是样本的数量。以下是一些可能的原因:

  1. 特征选择:决策树算法会选择最优的特征来进行划分。在每一步,算法会计算不同特征的某个指标(如信息增益或基尼系数),以确定最佳划分特征。因此,在选择划分特征时,并不仅仅考虑样本数量。
  2. 数据不平衡:在实际应用中,很多数据集都存在类别不平衡的情况,即某些类别的样本数量较少。为了处理这种情况,决策树算法会调整划分的权重,以更好地平衡不同类别之间的样本数量。因此,决策树在每一步的值并不严格等于样本数量。
  3. 停止条件:决策树构建过程中,会设置一些停止条件,以避免过度拟合或无法继续划分的情况。这些停止条件可以是最小划分样本数量的限制,即在每一步划分时,样本数量必须满足一定的要求。因此,每一步的值可能受到这些停止条件的限制,而不仅仅是样本的数量。

总之,决策树在每一步的值不等于样本的数量是因为考虑了其他因素,如特征选择、数据不平衡和停止条件等。这样能够使决策树算法更加灵活和准确。腾讯云提供的决策树相关产品是腾讯云机器学习平台,您可以了解更多信息和产品介绍请访问:腾讯云机器学习平台

相关搜索:为什么这个ListNode的值在Python语言中不变?最常用的Ruby方法是什么来遍历哈希表,在每一步更新值?为什么在我的训练样本和测试样本数量很大的情况下,sklearn的kNN分类器运行得这么快为什么在填充这个值的时候只得到0?为什么在SQL查询中输入的日期值不等于excel工作表中的相同日期值?为什么这个函数在重复调用时会返回不同的值?为什么这个函数在不考虑输入的情况下返回相同的值?为什么这个数组在没有被要求的情况下改变它的值?为什么在岭回归中使用model.matrix会减少观察值的数量?为什么这个简单的Js函数在定义后添加()时不返回值/对象?为什么这个在Java数组中查找最大值的泛型方法不能编译?为什么这个指针在计算sum时传递的是一个值而不是地址?为什么我在检查器的脚本顶部设置一个int变量的值为0,这个值是1呢?为什么我的模型中的这个值在我的控制器中使用时返回null?(ASP.NET MVC)Bootstrap-Multiselect:为什么这个逗号分隔值的字符串在转换后不能作为数组工作为什么我在遍历一个表的时候得到这个“尝试调用一个表值”?为什么这个查找无序列表的最小和最大值的函数在某些情况下不起作用?为什么matplotlib ax.transData.transform在不同的ipython单元格中会给出不同的值?如何解决这个问题?为什么我只得到第一个对象,而这个对象在"for loop“中,并在vuejs中返回它的值?
相关搜索:
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

GBDT 算法:原理篇

至于抑制单颗决策树复杂度方法有很多,比如限制树最大深度、限制叶子节点最少样本数量、限制节点分裂时最少样本数量、吸收 bagging 思想对训练样本采样(subsample),在学习单颗决策树时只使用一部分训练样本...因为学习是加法模型,如果能够从前往后,一步只学习一个基函数及其系数(结构),逐步逼近优化目标函数,那么就可以简化复杂度。这一学习过程称之为 Boosting。...因此,使用平方损失函数时,GBDT 算法一步在生成决策树时只需要拟合前面的模型残差。...,即决策树模型复杂度由生成叶子节点数量和叶子节点对应向量 L2 范数决定。...根据上一步结果,找到最佳树结构,用等式(7) 为树每个叶子节点计算预测 然而,可能树结构数量是无穷,所以实际上我们不可能枚举所有可能树结构。

12.6K61

【技术分享】GBDT算法-原理篇

至于抑制单颗决策树复杂度方法有很多,比如限制树最大深度、限制叶子节点最少样本数量、限制节点分裂时最少样本数量、吸收bagging思想对训练样本采样(subsample),在学习单颗决策树时只使用一部分训练样本...因为学习是加法模型,如果能够从前往后,一步只学习一个基函数及其系数(结构),逐步逼近优化目标函数,那么就可以简化复杂度。这一学习过程称之为Boosting。...因此,使用平方损失函数时,GBDT算法一步在生成决策树时只需要拟合前面的模型残差。...17.jpg 来定义,即决策树模型复杂度由生成叶子节点数量和叶子节点对应向量L2范数决定。...根据上一步结果,找到最佳树结构,用等式(7)为树每个叶子节点计算预测 然而,可能树结构数量是无穷,所以实际上我们不可能枚举所有可能树结构。

1.8K31
  • 决策树(Decision Tree)CART算法

    CART算法是一种二分递归分割技术,把当前样本划分为两个子样本,使得生成每个非叶子结点都有两个分支,因此CART算法生成决策树是结构简洁二叉树。...由于CART算法构成是一个二叉树,它在一步决策时只能是“是”或者“否”,即使一个feature有多个取值,也是把数据分为两部分。...维空间划分为两部分,一部分所有点都满足 ? ,另一部分所有点都满足 ? ,对非连续变量来说属性取值只有两个,即等于该不等于。...假设现在来看有房情况这个属性,那么按照它划分后Gini指数计算如下 ? 而对于婚姻状况属性来说,它取值有3种,按照每种属性分裂后Gini指标计算如下 ?...CART树建树过程中,可能存在Overfitting,许多分支中反映是数据中异常,这样决策树对分类准确性不高,那么需要检测并减去这些不可靠分支。

    1.7K50

    Python3《机器学习实战》学习笔记(十):提升分类器性能利器-AdaBoost

    轮从原始样本集中使用Bootstraping方法抽取n个训练样本训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中)。共进行k轮抽取,得到k个训练集。...Boosting思路则是采用重赋权(re-weighting)法迭代地训练基分类器,主要思想: 一轮训练数据样本赋予一个权重,并且一轮样本分布依赖上一轮分类结果。...Boosting:一轮训练集不变,只是训练集中每个样例分类器中权重发生变化。而权是根据上一轮分类结果进行调整。 样例权重: Bagging:使用均匀取样,每个样例权重相等。...其中,h_t(x_i) = y_i表示对第i个样本训练正确,不等于则表示分类错误。Z_t是一个归一化因子: ? 这个公式我们可以继续化简,将两个公式进行合并,化简如下: ?...(8)False negative rate(FNR),Miss rate 假负类率,缺失率,模型预测为负类样本中,是正类数量,占真实正类样本比值。 ? 缺失越小,说明模型效果越好。

    78610

    决策树到XGBOOST

    一步,随机森林作为集成学习之光基于决策树实现,一定程度上解决了决策树容易过拟合问题。...若数据集按特征取值是否大于切分点划分为两部分,平方误差公式为: 其中M是左子树样本数量,N是右子树样本数量。...随机森林Bagging基础上,进一步决策树训练过程中引入了一些随机性:决定划分属性时候,先随机选择一个包含k个属性子集,然后再从子集中选择一个最优属性进行划分,这也是随机内涵。...我们知道,决策树学习最耗时一个步骤就是对特征进行排序(因为要确定最佳分割点),XGBoost训练之前,预先对数据进行了排序,然后保存为block结构,后面的迭代中重复地使用这个结构,大大减小计算量...思想建立树与树之间联系,使森林不再是互相独立树存在,进而成为一种有序集体决策体系;XGBoostGBDT基础上更进一步,将轮迭代目标函数中加入正则项,进一步降低过拟合风险。

    1.4K00

    CS229 课程笔记之十三:决策树和集成方法

    我们可以查看生成阈值集来了解为什么模型作出了该预测。 然而,这并不是决策树全部,下面将介绍一些关于决策树值得注意点。...现在,如果我们将每个随机变量想象为一个给定模型误差,则增加模型数量以及降低模型之间相关性都可以减少集成后模型误差方差: 增加模型数量减少第二项 降低模型之间相关性减少第一项,使得各变量回归独立同分布...我们先训练一个决策树桩(中间图),再找出其中分类错误样本,提升其权重;然后训练一个新决策树桩,更加趋向于对这些错误样本进行正确分类;持续上述过程,一步样本权重进行重新评估,最终输出上述弱学习模型结合...2.2.2 Adaboost 下面介绍一种最流行提升算法:Adaboost,其流程如下图所示: ? 每个样本权重最开始均匀分配,而错误分类样本一步中提升权重。...对于弱分类器 ,一步我们尝试去找到下一个弱分类器参数和权重,来最大程度减小当前集成模型剩余误差。 作为该算法一种具体实现,选择平方损失函数相当于将单个分类器拟合至残差 。

    92510

    通俗解析集成学习之GBDT

    Boosting和负梯度 "Boosting" 基本思想是通过某种方式使得一轮基学习器训练过程中更加关注上一轮学习错误样本。...参数空间中优化,每次迭代得到参数增量,这个增量就是负梯度乘上学习率; 函数空间中优化,每次得到增量函数,这个函数会去拟合负梯度,GBDT中就是一个个决策树。...可以认为 “GB” 是一轮基学习器负梯度上逐步趋近最小损失函数。 基学习器和负梯度 GBDT 中这个基学习器是一棵分类回归树(CART),我们可以使用决策树直接拟合梯度。...可加只是样本根据决策树模型得到预测 h(x,D)罢了。...比如我们一座大山上某处位置,由于我们不知道怎么下山,于是决定走一步一步,也就是走到一个位置时候,求解当前位置梯度,沿着梯度负方向,也就是当前最陡峭位置向下走一步,然后继续求解当前位置梯度

    1.9K20

    随机森林概览:创建,使用和评估

    创建决策树一步中,仅随机选择一部分变量进行创建节点(根节点和内部节点)。本例中,仅使用2个随机变量进行创建决策树【在后续学习中,我们将了解如何选择最适随机变量数量】。...由于样本数量较少,我们在此处假设Good Blood Circulation分类效果更优,将其作为决策树根节点。 ?...一步使用2个随机变量创建决策树(eg,Good Blood Circulation和Blocked Arteries)。重复步骤创建随机森林。 一步使用3个随机变量创建决策树。...比较:一步使用2个随机变量随机森林与一步使用3个随机变量随机森林袋外误差率比较。 继续创建不同随机变量数量随机森林,将它们进行比较,从而选出最佳精准随机森林。...也就是说,评估已创建随机森林性能后,通过改变创建决策树一步考虑随机变量个数,创建新随机森林,并将创建随机森林进行相互比较,最终选出最优随机森林。

    1.1K10

    3种常见集成学习决策树算法及原理

    Random Forest Random Forest(随机森林),用随机方式建立一个森林。RF 算法由很多决策树组成,一棵决策树之间没有关联。...3.1 思想 Random Forest(随机森林)是 Bagging 扩展变体,它在以决策树为基学习器构建 Bagging 集成基础上,进一步决策树训练过程中引入了随机特征选择,因此可以概括...同时,一轮中加入一个新弱分类器,直到达到某个预定足够小错误率或达到预先指定最大迭代次数。...第 k 轮强学习器为: 损失函数: 利用前向分布学习算法关系可以得到损失函数为: 令 ,它不依赖于 ,因此与最小化无关,仅仅依赖于 ,随着一轮迭代而将这个式子带入损失函数,损失函数转化为: 我们求...GBDT Boosting 不同于 Adaboost Boosting,GBDT 一步残差计算其实变相地增大了被分错样本权重,而对与分对样本权重趋于 0,这样后面的树就能专注于那些被分错样本

    40910

    两万字带你完整掌握八大决策树

    3、剪枝策略 为什么要剪枝:过拟合泛化能力表现非常差。...GBDT Boosting 不同于 Adaboost Boosting,GBDT 一步残差计算其实变相地增大了被分错样本权重,而对与分对样本权重趋于 0,这样后面的树就能专注于那些被分错样本...个样本预测。 损失函数可由预测 ? 与真实 ? 进行表示: ? 其中 ? 为样本数量。...是一个常数,其对函数优化不会产生影响,因此目标函数可以写成: ? 所以我们只需要求出一步损失函数一阶导和二阶导(由于前一步 ?...是已知,所以这两个就是常数),然后最优化目标函数,就可以得到一步 ? ,最后根据加法模型得到一个整体模型。

    1.7K32

    最常用决策树算法!Random Forest、Adaboost、GBDT 算法

    Random Forest(随机森林),用随机方式建立一个森林。RF 算法由很多决策树组成,一棵决策树之间没有关联。...3.1 思想 Random Forest(随机森林)是 Bagging 扩展变体,它在以决策树为基学习器构建 Bagging 集成基础上,进一步决策树训练过程中引入了随机特征选择,因此可以概括...同时,一轮中加入一个新弱分类器,直到达到某个预定足够小错误率或达到预先指定最大迭代次数。...第 k 轮强学习器为: 损失函数: 利用前向分布学习算法关系可以得到损失函数为: 令 ,它不依赖于 ,因此与最小化无关,仅仅依赖于 ,随着一轮迭代而将这个式子带入损失函数,损失函数转化为: 我们求...GBDT Boosting 不同于 Adaboost Boosting,GBDT 一步残差计算其实变相地增大了被分错样本权重,而对与分对样本权重趋于 0,这样后面的树就能专注于那些被分错样本

    1.2K30

    机器学习算法之集成学习

    2.2 随机森林构造过程 机器学习中,随机森林是一个包含多个决策树分类器,并且其输出类别是由个别树输出类别的众数而定。 随机森林 = Bagging + 决策树 ?...: 1)一次随机选出一个样本,有放回抽样,重复 N 次(有可能出现重复样本) 2) 随机去选出 m 个特征,m<<M ,建立决策树 思考 1.为什么要随机抽样训练集?  ...第一步:计算损失函数,并求出第一个预测。 ? 第二步:求解划分点。 ? 得出:年龄21为划分点 方差=0.01+0.0025=0.0125 第三步:通过调整后目标值,求解得出h1(x) ?...决策树一轮学习中,XGBoost 使用决策树算法作为弱学习进行优化。...正则化:优化过程中 XGBoost 为防止过拟合,损失函数中加入惩罚项,限制决策树叶子节点个数以及决策树叶子节点。 [拓展]什么是泰勒展开式 ?

    1K20

    决策树算法大家庭:Random Forest、Adaboost、GBDT 算法总结

    Random Forest Random Forest(随机森林),用随机方式建立一个森林。RF 算法由很多决策树组成,一棵决策树之间没有关联。...3.1 思想 Random Forest(随机森林)是 Bagging 扩展变体,它在以决策树为基学习器构建 Bagging 集成基础上,进一步决策树训练过程中引入了随机特征选择,因此可以概括...同时,一轮中加入一个新弱分类器,直到达到某个预定足够小错误率或达到预先指定最大迭代次数。...第 k 轮强学习器为: 损失函数: 利用前向分布学习算法关系可以得到损失函数为: 令 ,它不依赖于 ,因此与最小化无关,仅仅依赖于 ,随着一轮迭代而将这个式子带入损失函数,损失函数转化为: 我们求...GBDT Boosting 不同于 Adaboost Boosting,GBDT 一步残差计算其实变相地增大了被分错样本权重,而对与分对样本权重趋于 0,这样后面的树就能专注于那些被分错样本

    69830

    面试、笔试题集:集成学习,树模型,Random Forests,GBDT,XGBoost

    基本思路是将基分类器层层叠加,一层训练时候,对前一层基分 类器分错样本,给予更高权重。测试时,根据各层分类器结果加权得到 最终结果。...其中很著名算法之一是基于决策树基 分类器随机森林(Random Forest)。为了让基分类器之间互相独立,将训练集 分为若干子集(当训练样本数量较少时,子集之间可能有交叠)。...我们知道,决策树学习过程最耗时一个步骤就是对特征进行排序以确定最佳分割点,所以XGBoost训练之前,预先对各特征数据进行了排序,并将其保存为 block 结构,利用这个block结构,各个特征增益计算可以多线程进行...xgboost一层都动态构建直方图, 因为xgboost直方图算法不是针对某个特定feature,而是所有feature共享一个直方图(每个样本权重是二阶导),所以一层都要重新构建直方图,而...注意:覆盖范围这里指的是一个特征用作分割点后,其影响样本数量,即有多少样本经过 该特征分割到两个子节点。

    92920

    随机森林

    Boosting:一轮训练集不变,只是训练集中每个样例分类器中权重发生变化。而权是根据上一轮分类结果进行调整。...在用ID3算法做决策树时,肯定会选择这个特征作为第一个最优特征,因为这个特征分出来样本集每一个纯度都是最高。 无法处理特征为连续型数据特征。...信息增益率: C4.5中惩罚小数量样本做法是,根据某特征分类,并计算出分类前后熵差后,再计算该特征惩罚,用该分类特征熵差除以惩罚值得出“信息增益率”,使信息增益率越大特征,就是最优特征...RandomForest决策树为基学习器构建Bagging集成基础上,进一步决策树训练过程中引入了随机属性选择。...随机森林bagging基础上更进一步样本随机:从样本集中用Bootstrap随机选取n个样本 特征随机:从所有属性中随机选取K个属性,选择最佳分割属性作为节点建立CART决策树(泛化理解,

    44310

    随机森林概述

    由于是有放回抽样,两次抽样之间是独立,因此对于连续n次抽样,一个样本没被抽中概率为: 可以证明,当n趋向于无穷大时这个极限是1/e,约等于0.368,其中e是自然对数底数。...包外误差 训练一棵决策树时有一部分样本未参与训练,可以训练时利用这些没有被选中样本做测试,统计它们预测误差,称为包外误差。这种做法与交叉验证类似。...这个结论为我们提供了确定决策树数量一种思路,可以通过观察误差来决定何时终止训练。当训练误差稳定之后停止训练。...它原理是,如果某个特征分量对分类很重要,那么改变样本该特征分量样本预测结果就容易出现错误。也就是说这个特征对分类结果很敏感。...对于分类问题,训练某决策树包外样本集中随机挑选两个样本,如果要计算某一变量重要性,则置换这两个样本这个特征。统计置换前和置换后分类准确率。

    1.2K20

    AI面试题之GBDT梯度提升树

    第一个模型预测年龄,虽然真实是30岁,第一个模型只给出了20岁估计; 第二棵树要预测就是这个10岁残差,但是第二棵树只给出了6岁估计; 第三棵树预测是第二棵树4岁残差,但是……………...然后想求取这个关于 梯度,那就是: 所以残差平方损失情况下,就是等于负梯度,所以两者一回事。 3 残差过于敏感 对于数据不干净,没有清晰掉异常值数据样本。...---- 【小小总结】GBDT是基于boosting思想,串行地构造多棵决策树来进行数据预测,它是损失函数所在函数空间中做梯度下降,即把待求决策树模型当作参数,轮迭代都去拟合损失函数在当前模型下负梯度...所幸是,通过各种方法(比如剪枝、最大树深度、最小叶子样本数量、正则项等),抑制决策树复杂性,降低单颗决策树拟合能力,再通过梯度提升方法集成多个决策树,最终能够很好解决过拟合问题。...限制树最大深度 限制叶子节点最少样本数量 限制节点分裂时最少样本数量 吸收bagging思想对训练样本采样(subsample)在学习单颗决策树时只使用一部分训练样本样本采样) 借鉴随机森林思路在学习单颗决策树时只采样一部分特征

    1.3K40

    如果Boosting 你懂、那 Adaboost你懂么?

    轮从原始样本集中使用Bootstraping方法抽取n个训练样本训练集中,有些样本可能被多次抽取到,而有些样本可能一次都没有被抽中),共进行k轮抽取,得到k个训练集。...Boosting思路则是采用重赋权(re-weighting)法迭代地训练基分类器,主要思想: 一轮训练数据样本赋予一个权重,并且一轮样本分布依赖上一轮分类结果。...Boosting:一轮训练集不变,只是训练集中每个样例分类器中权重发生变化。而权是根据上一轮分类结果进行调整。 样例权重: Bagging:使用均匀取样,每个样例权重相等。...4、更新样本权重 第一次学习完成后,需要重新调整样本权重,以使得第一分类中被错分 样本权重,接下来学习中可以重点对其进行学习: ?...其中,h_t(x_i) = y_i表示对第i个样本训练正确,不等于则表示分类错误。Z_t是一个归一化因子: ? 这个公式我们可以继续化简,将两个公式进行合并,化简如下: ?

    1.5K50

    【机器学习】--决策树和随机森林

    大到都快是整个H(X)了 为了避免这种现象发生,我们不是用信息增益本身,而是用信息增益除以这个特征本身,看除之后有多大!...2、解决过拟合两种方法 剪枝 随机森林 3、解决过拟合方法之剪枝 为什么要剪枝:决策树过拟合风险很大,理论上可以完全分得开数据(想象一下,如果树足够庞大,每个叶子节点不就一个数据了嘛) 剪枝策略:预剪枝...随机森林思考: 随机森林构建过程中,由于各棵树之间是没有关系,相对独立构建 过程中,构建第m棵子树时候,不会考虑前面的m-1棵树。因此引出提升算法,对分错样本加权。...提升是一种机器学习技术,可以用于回归和分类问题,它一步产生弱预测模型(如决策树),并加权累加到总模型中;如果一步弱预测模型生成都是依 据损失函数梯度方式,那么就称为梯度提升(Gradient...val maxDepth=3 //设置离散化程度,连续数据需要离散化,分成32个区间,默认其实就是32,分割区间保证数量差不多 这里可以实现把数据分到0-31这些数中去 这个参数也可以进行剪枝

    92730

    随机森林

    定义 随机森林算法思想就是通过集成学习和随机方式将多棵树集成一种算法,通过多棵树对数据集进行学习训练最后投票选举出最佳一个最终输出。这里一棵树是一颗决策树,也叫作一个分类器。...特点: 准确率极高 不用对决策树剪枝 能够很好处理高维度数据,不需要降维 能很好处理大数据及 在有缺省时候也能得到很好结果 相关概念 信息,熵,信息增益: 其实这几个概念是决策树中出现,...决策树通过计算每一次分裂最佳学习增益来决定如何选择下一步将要分裂属性,也就是特征选取顺序。...熵和信息增益: 化学中我们也学过关于熵一些东西,比如熵增加越趋向于混乱,熵减少趋向于稳定,机器学习中当熵越大表示这个类别的不确定性越大,反之越小。...通过多N个样本构建决策树就可以得到N个预测,然后再测试样本时候,使用这N个决策树预测得到结果使用投票机制就可已得到最终分类结果。 一些疑问? 为什么要随机选择训练集?

    87070
    领券