首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

R开发:常用R语言包介绍

r与python差异比较大的一个地方就是,python的机器学习算法集中程度比较高,比如sklearn,就集成了很多的算法,而R语言更多时候需要一个包一个包去了解,比较费时费力,对于python转过来的朋友非常不友好...,抽空整理了工作中常用的R包如下: 常用检验函数: ?...基本上分布中常见的都罗列了: 常用作图函数包: ggplot2:万能,基本上excel能画的图它都能画 rattle:fancyRpartPlot函数,决策树画图函数 基础包函数:barplot、pie...;glm函数,实现广义线性回归;nls函数,实现非线性最小二乘回归;knn函数,k最近邻算法 rpart包 rpart函数,基于CART算法的分类回归树模型 randomForest包 randomForest...统计及预处理: 常用的包 Base R, nlme aov, anova 方差分析 density 密度分析 t.test, prop.test, anova, aov:假设检验 rootSolve非线性求根

1.1K50

【学习】用Excel进行回归分析

在日常数据分析工作当中,回归分析是应用十分广泛的一种数据分析方法,按照涉及自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。...回归分析的实施步骤: 1)根据预测目标,确定自变量和因变量 2)建立回归预测模型 3)进行相关分析 4)检验回归预测模型,计算预测误差 5)计算并确定预测值 我们接下来讲解在Excel2007中如何进行回归分析...一、案例场景 为了研究某产品中两种成分A与B之间的关系,现在想建立不同成分A情况下对应成分B的拟合曲线以供后期进行预测分析。测定了下列一组数据: ?...在图中我们可以看到,拟合的回归方程是 y = 0.223x + 9.121 ,R² = 0.982 附:R2相关系数取值及其意义 ?...我们进一步使用Excel中数据分析的回归分析提供更多的分析变量来描述这一个线性模型

1.5K50
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    R语言非线性混合效应 NLME模型(固定效应&随机效应)对抗哮喘药物茶碱动力学研究

    然而,我们清楚地看到这些曲线之间的一些差异,这不仅仅是由于残差造成的。我们看到病人吸收和消除药物的速度或多或少。 一方面,每个单独的特征将通过_非线性_ 药代动力学 (PK) 模型正确描述 。...将非线性模型拟合到数据 将非线性模型拟合到单个患者 让我们考虑本研究的第一个主题(id=1) the.dat.dta$id==1 ,c("tme)\] plot(data=teo1 我们可能想为这个数据拟合一个.../V/(a-k)\*(exp(-e\*t)-exp(-k\*t)) 然后我们可以使用该 nls 函数将此(非线性)模型拟合到数据 nls(neatin ~p.me1(psi, time)) coef(km1...t,ψ^) e. <- dafme(tm=sq(0,40,=.2)) w.pd1 <- pedct(pk, newaa=wdf) line(da=new., aes(x=tie,y=re1)) 将独特的非线性模型拟合到几个患者上...这里,ψ是N个受试者共享的PK参数的向量。 在该模型中,ψ 的最小二乘估计定义为 让我们将该nls 函数与来自 12 个受试者的合并数据一起使用 。

    11510

    R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线

    非线性回归的一个问题是它以迭代方式工作:我们需要提供模型参数的初始猜测值,算法逐步调整这些值,直到(有希望)收敛到近似最小二乘解。根据我的经验,提供初始猜测可能会很麻烦。...在最大值/最小值处,响应为: R 中的多项式拟合 在 R 中,可以使用线性模型函数 'lm()' 进行多项式拟合。...虽然这不是高效的方法,但在某些情况下,我发现自己需要使用 'nls()' 或 'drm()' 函数进行多项式拟合。 凹/凸曲线 让我们进入非线性领域。...: 其中,d与上述模型中的a相同,e=1/k。...事实上,我们可以看出它的一阶导数是: R D(exesion(a - (a - b) * exp (- c * X)), "X") 即: 我们可以看到生长的相对速率并不是常数(如指数模型中),而是在

    16310

    用Excel进行数据分析:回归分析

    在日常数据分析工作当中,回归分析是应用十分广泛的一种数据分析方法,按照涉及自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。...回归分析的实施步骤: 1)根据预测目标,确定自变量和因变量 2)建立回归预测模型 3)进行相关分析 4)检验回归预测模型,计算预测误差 5)计算并确定预测值 我们接下来讲解在Excel2007中如何进行回归分析...一、案例场景 为了研究某产品中两种成分A与B之间的关系,现在想建立不同成分A情况下对应成分B的拟合曲线以供后期进行预测分析。测定了下列一组数据: ?...在图中我们可以看到,拟合的回归方程是 y = 0.223x + 9.121 ,R² = 0.982 附:R2相关系数取值及其意义 ?...我们进一步使用Excel中数据分析的回归分析提供更多的分析变量来描述这一个线性模型 4、选中数据—>数据—>数据分析—>回归 注:本操作需要使用Excel扩展功能,如果您的Excel尚未安装数据分析,可以参考该专题文章的第一篇

    1.5K50

    广义估计方程和混合线性模型在R和python中的实现

    广义估计方程和混合线性模型在R和python中的实现欢迎大家关注全网生信学习者系列:WX公zhong号:生信学习者Xiao hong书:生信学习者知hu:生信学习者CDSN:生信学习者2介绍针对某个科学问题...因此,广义估计方程(generalized estimating equations,GEE) 和混合线性模型(mixed linear model,MLM) 被广泛应用于纵向数据的统计分析。...区分混合线性模型中的随机效应和固定效应是一个重要的概念。固定效应是具有特定水平的变量,而随机效应捕捉了由于分组或聚类引起的变异性。比如下方正在探究尿蛋白对来自不同患者的GFR的影响。...固定效应:具有特定的水平或值需要进行研究的主要变量,如尿蛋白等随机效应:患者分层结构:尿蛋白嵌套在患者内模型方程:GFR = 尿蛋白 + 患者 + 误差解释:解释固定效应,以了解尿蛋白的变化如何与GFR...- 实例操作及结果解读(R、Python、SPSS实现)混合线性模型介绍--Wiki广义估计方程中工作相关矩阵的选择及R语言代码在Rstudio 中使用pythonAn Introduction to

    49700

    R中进行nls模型分析

    欢迎关注R语言数据分析指南 ❝本节来介绍如何使用R进行nls分析使用内置的mtcars数据集,整个过程仅参考。希望对各位观众老爷能有所帮助。...❞ 「nls(非线性最小二乘法)拟合指数模型」 使用nls来拟合非线性模型前需要先确定初始值,可通过将非线性模型线性化来估计参数的初始值。...通过对 mpg 取对数并对 wt 进行线性回归,可以将非线性的指数关系转换为线性关系,这样更容易分析和获取初始值。线性模型的斜率和截距转换回指数模型的参数。...线性模型的截距将是 log(k),因此k 将是截距的指数。 线性模型的斜率将是b的估计值。...函数拟合mtcars数据集中的mpg与wt之间的指数关系,k和b为模型参数 nls_model nls(mpg ~ k * exp(b * wt), data = mtcars

    27210

    非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究|附代码数据

    /V/(a-k)*(exp(-e*t)-exp(-k*t)) 然后我们可以使用该 nls 函数将此(非线性)模型拟合到数据 nls(neatin ~p.me1(psi, time)) coef(km1)...这里,ψ是N个受试者共享的PK参数的向量。 在该模型中,ψ 的最小二乘估计定义为 让我们将该nls 函数与来自 12 个受试者的合并数据一起使用 。  ...在该模型中,ψi 的最小二乘估计定义为 for (i in (1:N)) {   pkmi nls(cocetatn ~ pk.mdl1(psi, time)   pred 非线性)混合效应模型 i) 使用方程: 其中 eij∼iidN(0,a2) 和 ηi∼iidN(0,Ω), ii) 或使用概率分布: 模型是(y,ψ)的联合概率分布,其中...在非线性混合效应模型中存在几种最大似然估计的算法。特别是,随机近似EM算法(SAEM)是一种迭代算法,在一般条件下收敛到似然函数的最大值。

    30900

    R语言基于协方差的SEM结构方程模型中的拟合指数

    p=10165 ---- 在实践中, 因子负载较低(或测量质量较差)的模型的拟合指数要好于因子负载较高的模型。...c p = (δ / σ )2ncp=(δ/σ)2 Ñ Ç pncpχ 2χ2δδ  遵循以下决策规则:  所有这些 在R中实现。 ...delta = .4,因子加载的标准意味着如果模型中缺少因子加载并且因子加载大于.4。默认情况下,delta = .1。根据SSV的建议,这足以解决相关错误。因此,我仅使用选择相关错误作为输出。...潜在变量模型中测量质量和拟合指数截止之间的棘手关系。“人格评估杂志”。...测试结构方程模型还是检测错误规格?结构方程模型:多学科期刊,16(4),561–582。https://doi.org/10.1080/10705510903203433 ↩

    1.3K00

    R语言非线性方程数值分析生物降解、植物生长数据:多项式、渐近回归、米氏方程、逻辑曲线、Gompertz、Weibull曲线

    非线性回归的一个问题是它以迭代方式工作:我们需要提供模型参数的初始猜测值,算法逐步调整这些值,直到(有希望)收敛到近似最小二乘解。根据我的经验,提供初始猜测可能会很麻烦。...在最大值/最小值处,响应为: R 中的多项式拟合 在 R 中,可以使用线性模型函数 'lm()' 进行多项式拟合。...虽然这不是高效的方法,但在某些情况下,我发现自己需要使用 'nls()' 或 'drm()' 函数进行多项式拟合。 凹/凸曲线 让我们进入非线性领域。...: 其中,d与上述模型中的a相同,e=1/k。...事实上,我们可以看出它的一阶导数是: R D(exesion(a - (a - b) * exp (- c * X)), "X") 即: 我们可以看到生长的相对速率并不是常数(如指数模型中),而是在

    73160

    R语言----绘图学习笔记之Scatter plots

    前言 最近某项目要搞数据挖掘,需要对数据进行可视化显示,原本我是打算直接用excel 算了,打算,用了一段时间,发现有些数据图用excel麻烦得要命,然后,上网找了一下,原来,有在这方面也有一门专门的语言...----R语言,我发现,用它绘制数据图十分强大,就打算花几天,就学习如何用R语言绘制数据图 散布图(scatter plots) 需要掌握的命令: plot() xyplot() qplot() text...() smoothScatter() matrix() jitter() rbinom() rnorm() lines() lowess() nls() 用的的包: ggplot2 lattice scattersplot3d...你要查的命令即可 基础用法: plot(cars$dist~cars$speed) ? 更多用法在R控制台中打上 ?...非线性模式的曲线: x <- -(1:100)/10 y <- 100+10*exp(x/2)+rnorm(x)/10 nlmod nls(y~Const+A*exp(B*x),trace=TRUE

    2.6K100

    新的量子算法破解了非线性方程,计算机能否代替人类成为「先知」?

    但在非线性系统中,相互作用会影响到自身——当气流经过喷气机的机翼时,气流会改变分子相互作用,从而改变气流,循环往复。...马里兰大学量子信息研究员安德鲁 • 柴尔德斯(Andrew Childs)说:「这就是为什么天气难以预测、复杂的流体流动难以理解的原因之一。...在 11 月发表的独立研究中,Childs 领导的团队和 MIT 的团队都描述了一个强大的工具,可以使量子计算机更好地对非线性动力学进行建模。...马里兰州的研究准确地量化了可以处理多少非线性的新参数 R,R 代表了问题的非线性与其线性的比率,即问题趋于非线性的趋势与将系统保持在轨道上的摩擦力。...两种技术给我们带来的最重要的警示是,量子解决方案从根本上不同于经典解决方案。量子状态对应的是概率,而不是绝对值,比如你无需观察喷气机机身各个部分周围的气流,而是获取平均速度或检测停滞的空气。

    65610

    非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究|附代码数据

    /V/(a-k)*(exp(-e*t)-exp(-k*t)) 然后我们可以使用该 nls 函数将此(非线性)模型拟合到数据 nls(neatin ~p.me1(psi, time)) coef(km1...这里,ψ是N个受试者共享的PK参数的向量。 在该模型中,ψ 的最小二乘估计定义为 让我们将该nls 函数与来自 12 个受试者的合并数据一起使用 。  ...在该模型中,ψi 的最小二乘估计定义为 for (i in (1:N)) {   pkmi nls(cocetatn ~ pk.mdl1(psi, time)   pred 非线性)混合效应模型 i) 使用方程: 其中 eij∼iidN(0,a2) 和 ηi∼iidN(0,Ω), ii) 或使用概率分布: 模型是(y,ψ)的联合概率分布,其中...在非线性混合效应模型中存在几种最大似然估计的算法。特别是,随机近似EM算法(SAEM)是一种迭代算法,在一般条件下收敛到似然函数的最大值。

    47610

    非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究|附代码数据

    a/V/(a-k)\*(exp(-e\*t)-exp(-k\*t)) 然后我们可以使用该 nls 函数将此(非线性)模型拟合到数据 nls(neatin ~p.me1(psi, time)) coef(...这里,ψ是N个受试者共享的PK参数的向量。 在该模型中,ψ 的最小二乘估计定义为 让我们将该nls 函数与来自 12 个受试者的合并数据一起使用 。  ...在该模型中,ψi 的最小二乘估计定义为 for (i in (1:N)) {   pkmi nls(cocetatn ~ pk.mdl1(psi, time)   pred 非线性)混合效应模型 i) 使用方程: 其中 eij∼iidN(0,a2) 和 ηi∼iidN(0,Ω), ii) 或使用概率分布: 模型是(y,ψ)的联合概率分布,其中...在非线性混合效应模型中存在几种最大似然估计的算法。特别是,随机近似EM算法(SAEM)是一种迭代算法,在一般条件下收敛到似然函数的最大值。

    44310

    非线性回归nls探索分析河流阶段性流量数据和评级曲线、流量预测可视化

    为了减少局部最小值收敛的可能性, R 提供了在许多不同的起始值上迭代非线性最小二乘优化的功能(Padfield 和 Matheson)....如果预测变量和因变量之间的关系预期为非线性多项式,则可以包括项。然而,称为广义加性模型的线性回归的扩展允许将这些非线性项相对容易地拟合到数据中。...一旦确定了评级曲线周期和适当的公式,公式中的评级曲线参数 (1)") 和 (2)") 通过非线性最小二乘估计回归使用 R (Padfield )。...nls_multstart 将使用多个 ##起始参数和模型选择查找 ##全局最小值 stlower stupper ##适合nls rcnls(jorm, suors...本文摘选《R语言非线性回归nls探索分析河流阶段性流量数据和评级曲线、流量预测可视化》

    1.5K10

    用R语言作上海房价预测模型

    本文在建模型时,先通过R软件拟合商品房房价与时间的非线性回归模型,再利用7个自变量与因变量商品房价多元线性关系,并进行逐步回归,得到最优回归模型。...最后将时间的非线性回归模型与影响因素的多元线性模型预测值进行比较,给出2012、2013、2014年的房屋价格,其中2012年与2013年可与实际进行对比,进而评价模型的好坏。...建立非线性模型 首先对y画出关于时间t的散点图,对应的R语言程序为: X=read.csv("D:\\shanghaifangjia.csv") attach(X) plot(t,y) 得到图一: ?...回归方程的检验 ? 模型的建立 ? ? 模型的求解 ? 得到散点图如下: ?...首先对七个变量建立多元回归方程的R语言程序为: reg1=lm(ym~x1+x2+x3+x4+x5+x6+x7) summary(reg1) 得到如下结果: ?

    3.6K70

    针对用户活跃度分析中如何应用回归方法?

    回归分析是研究一个变量(因变量)和另一个变量(自变量)关系的统计方法,用最小二乘方法拟合因变量和自变量的回归模型,把一种不确定的关系的若干变量转化为有确定关系的方程模型近似分析,并且通过自变量的变化来预测因变来预测因变量的变化趋势...,在回归分析中两个变量的地位是不平等的,考察某一个变量的变化是依存于其他变量的变化程度,就是存在因果关系。...散点图通过添加趋势线可以直观的显示自变量和因变量的关系,如果不存在明显的线性或者曲线关系,就放弃建立回归模型,趋势线能够输出方程和拟合有度(R-square,该值越接近1,方程拟合越好)。...95%置信度为95%的下限和上限区间 其实对于建立的回归模型,我们还要进行方程的统计检验,检验的原假设回归系数=0,如果拒绝原假设(p小于置信系数),则回归系数不为0,回归系数或者回归方程显著。...如下图为通过回归分析工具得出的回归分析汇总结果: 可以看到R-square为0.68,也就说68%的数据符合这个方程,拟合方程的观测量为31个,计算下来就是有21个数据项是符合该方程的,F统计量在原假设成立前提下概率为

    1.5K80

    非线性混合效应 NLME模型对抗哮喘药物茶碱动力学研究

    a/V/(a-k)\*(exp(-e\*t)-exp(-k\*t)) 然后我们可以使用该 nls 函数将此(非线性)模型拟合到数据 nls(neatin ~p.me1(psi, time)) coef(...这里,ψ是N个受试者共享的PK参数的向量。 在该模型中,ψ 的最小二乘估计定义为 让我们将该nls 函数与来自 12 个受试者的合并数据一起使用 。...在该模型中,ψi 的最小二乘估计定义为 for (i in (1:N)) { pkmi nls(cocetatn ~ pk.mdl1(psi, time) pred 非线性)混合效应模型 i) 使用方程: 其中 eij∼iidN(0,a2) 和 ηi∼iidN(0,Ω), ii) 或使用概率分布: 模型是(y,ψ)的联合概率分布,其中...在非线性混合效应模型中存在几种最大似然估计的算法。特别是,随机近似EM算法(SAEM)是一种迭代算法,在一般条件下收敛到似然函数的最大值。

    66130

    R语言基于协方差的SEM结构方程模型中的拟合指数

    p=10165 ---- 在实践中, 因子负载较低(或测量质量较差)的模型的拟合指数要好于因子负载较高的模型。...c p = (δ / σ )2ncp=(δ/σ)2 Ñ Ç pncpχ 2χ2δδ  遵循以下决策规则:  所有这些 在R中实现。 ...delta = .4,因子加载的标准意味着如果模型中缺少因子加载并且因子加载大于.4。默认情况下,delta = .1。根据SSV的建议,这足以解决相关错误。因此,我仅使用选择相关错误作为输出。...潜在变量模型中测量质量和拟合指数截止之间的棘手关系。“人格评估杂志”。...测试结构方程模型还是检测错误规格?结构方程模型:多学科期刊,16(4),561–582。https://doi.org/10.1080/10705510903203433 ↩

    1.1K30

    「精挑细选」精选优化软件清单

    优化问题,在本例中是最小化问题,可以用以下方式表示 给定:一个函数f:一个{\displaystyle \to}\to R,从某个集合a到实数 搜索:A中的一个元素x0,使得f(x0)≤f(x)对于A中的所有...APMonitor -面向大规模、非线性、混合整数、微分和代数方程的建模语言和优化套件,具有MATLAB、Python和Julia接口。...LINDO -(线性、交互式和离散优化器)用于线性规划、整数规划、非线性规划、随机规划和全局优化的软件包。“什么最好的!”Excel外接程序使用LINDO执行线性、整数和非线性优化。...MATLAB -优化工具箱中的线性、整数、二次和非线性问题;多极大值、多极小值、非光滑优化问题;模型参数的估计与优化。 MIDACO是一种基于进化计算的单目标和多目标优化的轻量级软件工具。...用C/ c++和Fortran语言编写,具有Excel、VBA、Java、Python、Matlab、Octave、R、c#和Julia等网关。

    5.8K20
    领券