数据清理是数据分析过程中的关键步骤,它涉及识别缺失值、重复行、异常值和不正确的数据类型。获得干净可靠的数据对于准确的分析和建模非常重要。...Pandas提供字符串方法来处理不一致的数据。 str.lower() & str.upper()这两个函数用于将字符串中的所有字符转换为小写或大写。...它有助于标准化DataFrame列中字符串的情况。...()函数用于用新值替换DataFrame列中的特定值。...Fname':'Customer_Fname'} df.rename(columns=new_names, inplace=True) df.head() 总结 Python pandas包含了丰富的函数和方法集来处理丢失的数据
pandas.core.frame.DataFrame; 生成一个随机数数组; 将这个随机数数组与 DataFrame 中的数据列合并成一个新的 NumPy 数组。...在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。...然后使用 pd.DataFrame (data) 将这个字典转换成了 DataFrame df。在这个 DataFrame 中,“label” 作为列名,列表中的元素作为数据填充到这一列中。...print(random_array) print(values_array) 上面两行代码分别打印出前面生成的随机数数组和从 DataFrame 提取出来的值组成的数组。...运行结果如下: 总结来说,这段代码通过合并随机数数组和 DataFrame 中特定列的值,展示了如何在 Python 中使用 numpy 和 pandas 进行基本的数据处理和数组操作。
在本教程中,你将会发现更多关于异常值的信息,以及识别和过滤来自数据集的异常值的两种统计方法。 学完本教程,你将会明白: 数据集中出现的不太可能的观察值往往就是异常值,异常值的出现有很多种原因。...适用于对非高斯分布的数据样本进行总结的统计方法是四分位距,简称IQR。IQR计算数据的75和25百分位数间的差异,可用于构建箱形图中的矩形盒。...这一方法可以通过依次计算数据集中的每个变量的界限,来处理多变量数据,而且观察结果中的异常值即为落在矩形或超矩形范围外的数值。 扩展 这节列出了一些你可能会想要探索的扩展问题。...开发你自己的高斯测试数据集,并在直方图上绘制异常值和正常值。 在非高斯分布的单变量数据集上测试基于IQR的方法。 选择一种方法,创建一个函数,与任意维度共同过滤出给定数据集的异常值。...总结 在本教程中,你学习到了更多关于异常值的信息,以及识别和过滤来自数据集的异常值的两个统计方法。 具体来说,你学到了: 数据集中出现的不太可能的观察值往往就是异常值,异常值的出现有很多种原因。
我们不能对包含缺失值的数据进行分析或训练机器学习模型。这就是为什么我们90%的时间都花在数据预处理上的主要原因。我们可以使用许多技术来处理丢失的数据。...在这个文章中,我将分享处理数据缺失的9种方法,但首先让我们看看为什么会出现数据缺失以及有多少类型的数据缺失。 ? 不同类型的缺失值 缺失的值主要有三种类型。...无论原因是什么,我们的数据集中丢失了值,我们需要处理它们。让我们看看处理缺失值的9种方法。 这里使用的也是经典的泰坦尼克的数据集 让我们从加载数据集并导入所有库开始。...2、随机样本估算 在这种技术中,我们用dataframe中的随机样本替换所有nan值。它被用来输入数值数据。我们使用sample()对数据进行采样。在这里,我们首先取一个数据样本来填充NaN值。...优点: 容易实现 快速处理 缺点: 造成大量的数据丢失 df.dropna(inplace=True) ##Drop all the rows that contains NaN 总结 还有更多处理丢失值的其他技术
在很多情况下,有些数据并不是完整的,丢失了部分值,这一节将学习如何处理这些丢失的数据。...处理机制的权衡 常见的处理丢失数据的方法有两种: 使用掩码全局的指明丢失了哪些数据 使用哨兵值直接替换丢失的值 上述都两种方法各有弊利,使用掩码需要提供一个格外的布尔值数组,占用更多的空间;使用哨兵则在计算时需要更多的时间...Pandas中的数据丢失 Pandas中处理数据丢失的方法受制于Numpy,尽管Numpy提供了掩码机制,但是在存储、计算和代码维护来说,并不划算,所以Pandas使用哨兵机制来处理丢失的数据。...NaN 代替丢失值 另外一中哨兵是使用NaN,它时一种特殊的浮点型数据,可以被所有的系统识别。...image.png 从DataFrame中无法删除单个的值,只能删除整行或者整列数据。
Pandas数据处理——渐进式学习 ---- 目录 Pandas数据处理——渐进式学习 前言 环境 DataFrame删除NaN空值 dropna函数参数 测试数据 删除所有有空的行 axis属性值...,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...删除NaN空值 在数据操作的时候我们经常会见到NaN空值的情况,很耽误我们的数据清理,那我们使用dropna函数删除DataFrame中的空值。...需要提供列名数组 inplace:值是True和False,True是在原DataFrame上修改,False则创建新副本 测试数据 import pandas as pd import numpy...的时候需要去掉空值,其实和这个操作是一样的,空值是很多的时候没有太大意义,数据清洗的时候就会用到这块了。
pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...方法可以选择删除 # 要删除一列或一行中全部都是nan 值的那一行或列,可以通过下面的方式 print("del cols is all NaN\n", df.dropna(axis = 'columns...删除重复数据 对于数据源中的重复数据,一般来讲没有什么意义,所以一般情况下都会进行删除操作。 duplicated() duplicated 方法可以返回重复数据的分布情况,以布尔值显示。...inplace = True) 5. apply() 方法使用 replace、dropna、fillna函数要么针对NaN的某行或某列或某个,这些函数的作用有限,本章介绍的apply等函数可以针对整个...Series或DataFrame的各个值进行相应的数据的处理 对series 使用apply # 对series 使用apply ,会将series 中的每个元素执行操作 s = pd.Series(np.arange
dropna方法可以根据行列中是否有空值进行删除。...经过第6步之后,为什么原来的dataframe数据中Mjob和Fjob列的数据仍然是小写的?...简单说明原因,并修改原始dataframe中的数据使得Mjob和Fjob列变为首字母大写 函数操作不影响原数据,返回值的新数据要赋值给原数据,如下面代码所示: df[['Mjob','Fjob']] =...choice = chipo.choice_description.str.replace('[','').str.replace(']','').dropna() choice_list = [] for...image.png 7.3 Pandas中的时间序列 pandas通常是用于处理成组日期的,不管这个日期是DataFrame的轴索引还是列。to_datetime方法可以解析多种不同的日期表示形式。
因为最近事情略多,最近更新的不勤了,但是学习的脚步不能停,一旦停下来,有些路就白走了,今天就盘点一下R语言和Python中常用于处理重复值、缺失值的函数。...关于更为复杂的缺失值插补技术,因为涉及到一些比较深入的方法,这里暂且不呈现,仅对缺失值的描述和筛选做以上简单归总。...pandas中的序列和数据框都有固定的缺失值检测、描述、差值方法: myserie=pd.Series(["A","B",np.nan,"C"]) mydata=pd.DataFrame({ "A":[...#过滤缺失值: myserie.dropna() mydata.dropna() ? #针对数据框而言,默认情况下,dropna丢弃含有缺失值的行。...mydata.dropna(how="all",axis=1) #丢弃含有缺失值的行或者列 #缺失值填充: fillna函数一共两个参数: value表示要插补的值 method表示缺失值插补方法 myserie.fillna
在进行数据分析和建模过程中,大量时间花费在数据准备上:加载、清洗、转换和重新排列,这样的工作占用了分析师80%以上的时间。本章将讨论用于缺失值、重复值、字符串操作和其他数据转换的工具。...1、处理缺失值 缺失数据在数据分析中很容易出现,在pandas中使用NaN表示缺失值,称NaN为容易检测到的缺失值;同时python内建的None值在对象数组中也会被当做NA处理: import numpy...: NA处理方法表 方法 描述 dropna 根据每个标签的值是否为缺失数据来筛选轴标签,并允许根据丢失的数据量确定阈值 fillna 用某些值填充缺失的数据值或使用插值方法,如ffill或bfill...,在series上使用dropna,它会返回series中的所有非空数据及其索引值。...dropna()方法,默认删除含有缺失值的行 (2)传入how="all"可以删除全部为缺失值的行 (3)传入axis=1可以删除列 (4)传入thresh可以保留一定数量的观察值的行 处理缺失值是数据分析的第一步
df.dropna(how='all')# 一行中全部为NaN的,才丢弃该行 df.dropna(thresh=3)# 每行至少3个非空值才保留 缺失值填充fillna() df.fillna(0)...) # 将df的A列中 -999 全部替换成空值 df['A'].replace(-999, np.nan) #-999和1000 均替换成空值 obj.replace([-999,1000], np.nan...1000:0}) 重复值处理duplicated(),unique(),drop_duplictad() df.duplicated()#两行每列完全一样才算重复,后面重复的为True,第一个和不重复的为...中的列columns设置成索引index 打造层次化索引的方法 # 将columns中的其中两列:race和sex的值设置索引,race为一级,sex为二级 # inplace=True 在原数据集上修改的...模糊筛选数据(类似SQL中的LIKE) # 使用正则表达式进行模糊匹配,*匹配0或无限次,?
它不仅提供了很多方法,使得数据处理非常简单,同时在数据处理速度上也做了很多优化,使得和Python内置方法相比时有了很大的优势。 如果你想学习Pandas,建议先看两个网站。...(1)官网: Python Data Analysis Library (2)十分钟入门Pandas: 10 Minutes to pandas 在第一次学习Pandas的过程中,你会发现你需要记忆很多的函数和方法...s.value_counts(dropna=False):查看Series对象的唯一值和计数 df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数...():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行...s.astype(float):将Series中的数据类型更改为float类型 s.replace(1,'one'):用‘one’代替所有等于1的值 s.replace([1,3],['one','three
比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。...用法: # 直接将df或者series推断为合适的数据类型 DataFrame.infer_objects() pandas支持多种数据类型,其中之一是object类型。...object类型包括字符串和混合值(数字及非数字)。 object类型比较宽泛,如果可以确定为具体数据类型,则不建议用object。...5. replace 顾名思义,replace是用来替换df中的值,赋以新的值。...') 参数解释: to_replace:被替换的值 value:替换后的值 inplace:是否要改变原数据,False是不改变,True是改变,默认是False limit:控制填充次数 regex
,为了更好的分析,一般会对这些缺失数据进行识别和处理 2.1 缺失值查看 print(data.isnull().sum()) #统计每列有几个缺失值 missing_col = data.columns...= 2.2.2 删除 在数据量比较大时候或者一条记录中多个字段缺失,不方便填补的时候可以选择删除缺失值 data.dropna(axis=0,how="any",inplace=True) #axis...4、描述性变量转换为数值型 大部分机器学习算法要求输入的数据必须是数字,不能是字符串,这就要求将数据中的描述性变量(如性别)转换为数值型数据 #寻找描述变量,并将其存储到cat_vars这个list中去...) data = data.join(onehot_tran) #将one-hot后的数据添加到data中 del data[col] #删除原来的列 5、训练测试集划分 实际在建模前大多需要对数据进行训练集和测试集划分...在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。
之前为大家介绍过10个高效的pandas函数,颇受欢迎,里面的每一个函数都能帮我们在数据分析过程中节省时间。 高效的10个Pandas函数,你都用过吗?...比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。...用法: Series.nunique(dropna=True) # 或者 DataFrame.nunique(axis=0, dropna=True) 参数作用: axis:int型,0代表行,1代表列...object类型包括字符串和混合值(数字及非数字)。 object类型比较宽泛,如果可以确定为具体数据类型,则不建议用object。...5. replace 顾名思义,replace是用来替换df中的值,赋以新的值。
导读:在进行数据分析和建模的过程中,大量的时间花在数据准备上:加载、清理、转换和重新排列。本文将讨论用于缺失值处理的工具。 缺失数据会在很多数据分析应用中出现。...在统计学应用中,NA数据可以是不存在的数据或者是存在但不可观察的数据(例如在数据收集过程中出现了问题)。...当清洗数据用于分析时,对缺失数据本身进行分析以确定数据收集问题或数据丢失导致的数据偏差通常很重要。...处理缺失值的相关函数列表如下: dropna:根据每个标签的值是否是缺失数据来筛选轴标签,并根据允许丢失的数据量来确定阈值 fillna:用某些值填充缺失的数据或使用插值方法(如“ffill”或“bfill...0 1 2 0 1.0 6.5 3.0 1 1.0 NaN NaN 2 NaN NaN NaN 3 NaN 6.5 3.0 过滤DataFrame的行的相关方法往往涉及时间序列数据
首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数: df.dropna(axis=1, how='all') 共移除了14列中的6列,时间也只消耗了85.9秒。...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...数据处理 使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。
首先调用 DataFrame.isnull() 方法查看数据表中哪些为空值,与它相反的方法是 DataFrame.notnull() ,Pandas会将表中所有数据进行null计算,以True/False...如果只想移除全部为空值的列,需要加上 axis 和 how 两个参数: df.dropna(axis=1, how='all') 共移除了14列中的6列,时间也只消耗了85.9秒。...接下来是处理剩余行中的空值,经过测试,在 DataFrame.replace() 中使用空字符串,要比默认的空值NaN节省一些空间;但对整个CSV文件来说,空列只是多存了一个“,”,所以移除的9800万...数据处理 使用 DataFrame.dtypes 可以查看每列的数据类型,Pandas默认可以读出int和float64,其它的都处理为object,需要转换格式的一般为日期时间。...DataFrame.astype() 方法可对整个DataFrame或某一列进行数据格式转换,支持Python和NumPy的数据类型。
领取专属 10元无门槛券
手把手带您无忧上云