首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

手把手教你用Python库Keras做预测(附代码)

看完这篇教程,你能掌握以下几点: 如何确定一个模型,为后续的预测做准备 如何用Keras对分类问题进行类及其概率的预测 如何用Keras进行回归预测 现在就让我们开始吧 本文结构 教程共分为三个部分,分别是...对于新数据,我们不知道输出的是什么结果,这就是为什么首先需要一个模型。...它被称为“概率预测”,当给定一个新的实例,模型返回该实例属于每一类的概率值。(0-1之间) 在Keras中,我们可以调用predict_proba()函数来实现。...数据对象属于每一个类别的概率作为一个向量返回。 下边的例子对Xnew数据数组中的每个样本进行概率预测。...具体来说,你了解到: 如何确定一个模型,为后续的预测做准备 如何用Keras对分类问题进行类及其概率的预测 如何用Keras进行回归预测 对本文的内容有什么问题吗?

2.6K80

独家 | 手把手教你用Python构建你的第一个多标签图像分类模型(附案例)

在进入下一节之前,我建议你通读这篇文章——在10分钟内构建你的第一个图像分类模型!它将帮助你了解如何解决一个多类图像分类问题。...对于多类图像分类模型,我们在输出层使用softmax激活函数。对于每个图像,我们想要最大化单个类的概率。当一个类的概率增大时,另一个类的概率就减小。所以,我们可以说每个类的概率都依赖于其他类。...它将在内部创建n个模型(这里的n是总类数),每个类一个模型,并预测每个类的概率。 利用sigmoid激活函数将多标签问题转化为n-二分类问题。...让我们输出这部电影的类型: 1. train['Genre'][2] 这部电影仅有一个类型——喜剧。我们的模型所需的下一步是所有图像的真实标签。你能猜出这7254个图像真实标签的形状是什么吗?...尽管我们只有大约7000张图片来训练模型,但我们的模型表现得非常好。 你可以尝试收集更多的训练海报。我的建议是使所有的流派类别有相对平等的分布的数据集。为什么?

1.9K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Keras中神经网络模型的5阶段生命周期

    如何将它们结合在一起开发和运行您在Keras的第一个多层感知机网络。 让我们开始吧。...在Keras中,用这个训练好的网络模型在测试数据集上进行测试时,可以看到包括损失函数的结果在内的所有在编译时指定的测量指标的结果,比如分类的准确度。Keras会返回一个包含这些评估指标的list。...在回归问题的情况下,这些预测结果可能就是问题的答案,由线性激活函数产生。 对于二分类问题,预测结果可能是该输入样本属于第一类的概率,这个概率可以通过舍入转换为1或0。...对于多分类问题,结果可能是一个概率数组的形式(假设输出一个one-hot向量),可能需要使用argmax函数将概率数组转换为单个类别。 全过程示例 让我们把所有这些与一个小小的例子结合在一起。...具体来说,你了解到: 如何在Keras中定义,编译,拟合,评估和预测神经网络。 如何为分类和回归问题选择激活函数和配置输出层结构。 如何在Keras开发和运行您的第一个多层感知机模型。

    3.1K90

    第10章 使用Keras搭建人工神经网络·精华代码

    每个紧密层只负责自身的权重矩阵,权重矩阵是神经元与输 # 入的所有连接权重。紧密层还要负责偏置项 # (每个神经元都有一个偏置项)矢量。...(100, activation="relu")) # 最后,加上一个拥有10个神经元的输出层(每有一个类就要有一个神经元),激活函数是softmax(保证输出的 # 概率和等于1,因为就只有这十个类,...) # ]) # 模型的summary()方法可以展示所有层,包括每个层的名字(名字是自动生成的,除非建层时指定名字),输出 # 的形状(None代表批次大小可以是任意值),和参数的数量。...如果每个实例 # 的每个类都有一个目标概率(比如独热矢量,[0., 0., 0., 1., 0., 0., 0., 0., 0., 0.]...(X_new) print(y_proba.round(2)) # 我得到的结果是,输出的是概率值: # [[0. 0. 0. 0. 0. 0. 0. 0. 0. 1.] # [0. 0. 1. 0.

    1.3K40

    Keras 中神经网络模型的 5 步生命周期

    如何将它们结合在一起,在 Keras 开发和运行您的第一个多层感知器网络。 让我们开始吧。...这将提供对网络表现的估计,以便对未来看不见的数据进行预测。 该模型评估所有测试模式的损失,以及编译模型时指定的任何其他指标,如分类准确性。返回评估指标列表。...这就像使用新输入模式数组调用模型上的predict()函数一样简单。 例如: 1predictions = model.predict(x) 预测将以网络输出层提供的格式返回。...对于多类分类问题,结果可以是概率数组的形式(假设一个热编码输出变量),可能需要使用 argmax 函数将其转换为单个类输出预测。 端到端工作示例 让我们将所有这些与一个小例子结合起来。...如何为分类和回归问题选择激活函数和输出层配置。 如何在 Keras 开发和运行您的第一个多层感知器模型。 您对 Keras 中的神经网络模型有任何疑问吗?在评论中提出您的问题,我会尽力回答。

    1.9K30

    Keras中创建LSTM模型的步骤

    ; 如何将所有连接在一起,在 Keras 开发和运行您的第一个 LSTM 循环神经网络。...例如: predictions = model.predict(X) 预测将返回网络输出层提供的格式。 在回归问题的情况下,这些预测可能采用问题格式,由线性激活函数提供。...对于二进制分类问题,预测可能是第一个类的概率数组,可以通过舍入转换为 1 或 0。...对于多类分类问题,结果可能采用概率数组(假设一个热编码的输出变量),可能需要使用 argmax() NumPy 函数转换为单个类输出预测。...2、如何选择激活函数和输出层配置的分类和回归问题。 3、如何开发和运行您的第一个LSTM模型在Keras。 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    3.7K10

    TensorFlow 基础学习 - 1

    Keras库也需要导入。 然后我们导入一个名为numpy的库,它可以帮助我们方便快捷地将数据表示为列表。 在编译神经网络时,我们必须指定2个函数:一个损失函数和一个优化器。...随着经验的积累,我们将了解如何选择相应的损失和优化函数,以适应不同的情况。 在调用model.fit函数时,神经网络“学习”X和Y之间的关系。...from tensorflow import keras import numpy as np ## 构建模型 ## layer就是一层神经元, shape就是一个输入值, 接下来我们将创建一个最简单的神经网络...在运行下面代码之前,请猜一猜: model.predict([10.0]) ## 18.980xxx 接近于19 我们可能会想到19,对吧?但最后输出比19低了一丁点儿。这是为什么呢?...因为神经网络处理的是概率,所以根据我们向神经元网络提供的数据,它计算出X和y之间的关系是y=2x-1的概率非常高。但由于只有6个数据点,无法完全确定x和y的函数关系。

    39610

    使用Python实现深度学习模型:智能设备故障预测与维护

    通过深度学习技术,我们可以使用历史设备数据来预测设备的故障,从而减少停机时间和维护成本。本文将介绍如何使用Python实现一个简单的智能设备故障预测与维护模型,带你一步步了解这个过程。1....第一层的LSTM设置return_sequences=True,表示返回所有时间步的输出,第二层LSTM仅返回最后一个时间步的输出。...我们还加入了Dropout层以防止过拟合,并使用sigmoid激活函数进行二分类。...= model.predict(new_sequence)print(f"故障预测概率: {fault_prob}")4.2 预防性维护当模型检测到设备故障的概率超过某个阈值时(如0.7),我们可以自动生成维护工单...总结通过本文的介绍,我们展示了如何使用Python和深度学习技术实现智能设备故障预测与维护。主要步骤包括数据预处理、构建LSTM模型、训练与评估,以及如何将模型应用于实际的故障预测场景。

    50700

    TensorFlow2 keras深度学习:MLP,CNN,RNN

    开发多层感知器模型 多层感知器模型(简称MLP)是标准的全连接神经网络模型。 它由节点层组成,其中每个节点连接到上一层的所有输出,每个节点的输出连接到下一层节点的所有输入。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约94%的分类准确度,然后预测单行数据属于1类的概率为0.9。...鸢尾花数据集(csv) 鸢尾花数据集描述(csv) 鉴于它是一个多类分类,因此该模型在输出层中的每个类必须具有一个节点,并使用softmax激活函数。...这涉及添加一个称为Dropout()的层,该层接受一个参数,该参数指定前一个输出的每个输出下降的概率。例如0.4表示每次更新模型都会删除40%的输入。...这通常就是为什么在使用神经网络模型进行建模之前先标准化输入数据是一个好主意的原因。 批处理规范化是一种用于训练非常深的神经网络的技术,该技术可将每个输入标准化。

    2.2K30

    TensorFlow 2keras开发深度学习模型实例:多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN)

    开发多层感知器模型 多层感知器模型(简称MLP)是标准的全连接神经网络模型。 它由节点层组成,其中每个节点连接到上一层的所有输出,每个节点的输出连接到下一层节点的所有输入。...鉴于学习算法的随机性,您的具体结果会有所不同。尝试运行该示例几次。 在这种情况下,我们可以看到该模型实现了约94%的分类准确度,然后预测单行数据属于1类的概率为0.9。...鸢尾花数据集(csv) 鸢尾花数据集描述(csv) 鉴于它是一个多类分类,因此该模型在输出层中的每个类必须具有一个节点,并使用softmax激活函数。...这涉及添加一个称为Dropout()的层,该层接受一个参数,该参数指定前一个输出的每个输出下降的概率。例如0.4表示每次更新模型都会删除40%的输入。...这通常就是为什么在使用神经网络模型进行建模之前先标准化输入数据是一个好主意的原因。 批处理规范化是一种用于训练非常深的神经网络的技术,该技术可将每个输入标准化。

    2.3K10

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第16章 使用RNN和注意力机制进行自然语言处理

    根据类的对数概率(logits),categorical()函数随机从类索引采样。...模型剩下的部分就很简单了:有两个GRU层,第二个只返回最后时间步的输出。输出层只有一个神经元,使用sigmoid激活函数,输出评论是正或负的概率。然后编译模型,利用前面准备的数据集来训练几个周期。...模型自动将这个遮掩张量向前传递给所有层,只要时间维度保留着。所以在例子中,尽管两个GRU都接收到了遮掩张量,但第二个GRU层不返回序列(只返回最后一个时间步),遮掩张量不会传递到紧密层。...但在这个例子中,这就是一个错误,并且模型还不能返回修改,模型只能尽全力完成句子。如果每步都是最大贪心地输出结果,只能得到次优解。如何能让模型返回到之前的错误并改错呢?...为什么使用编码器-解码器RNN,而不是普通的序列到序列RNN,来做自动翻译? 如何处理长度可变的输入序列?长度可变的输出序列怎么处理? 什么是集束搜索,为什么要用集束搜索?

    1.8K21

    《机器学习实战:基于Scikit-Learn、Keras和TensorFlow》第10章 使用Keras搭建人工神经网络

    表10-1 回归MLP的典型架构 分类MLP MLP也可用于分类,对于二元分类问题,只需要一个使用Logistic激活的输出神经元:输出是一个0和1之间的值,作为正类的估计概率。...这时,就需要两个输出神经元,两个都是用Logistic函数:第一个输出垃圾邮件的概率,第二个输出紧急的概率。更为一般的讲,需要为每个正类配一个输出神经元。多个输出概率的和不一定非要等于1。...比如,对于第一张图,模型预测第9类(短靴)的概率是96%,第5类(凉鞋)的概率是3%,第7类(运动鞋)的概率是1%,剩下的类的概率都是0。...如果只关心概率最高的类(即使概率不高),可以使用方法predict_classes(): >>> y_pred = model.predict_classes(X_new) >>> y_pred array...因此在编译模型时,需要传入损失列表(如果只传入一个损失,Keras会认为所有输出是同一个损失函数)。Keras默认计算所有损失,将其求和得到最终损失用于训练。

    3.3K30

    基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。 电影评论分类:二分类 二分类可能是机器学习最常解决的问题。...(num_words=10000) num_words=10000意味着只保留训练集中最常出现的前10000个词,不经常出现的单词被抛弃---最终所有评论的维度保持相同。...因为是二分类问题,网络模型的输出是一个概率,最好使用binary_crossentropy损失函数,也可以使用mean_squared_error均方误差损失函数。...使用relu为激活函数的Dense网络层的线性连接能解决很大一部分问题; 在二分类问题中,网络模型应该以包含一个神经元,激活函数为sigmoid的Dense层结束;输出是介于0~1的标量,可以理解为概率...二分类问题,sigmoid标量输出,对应损失函数应该选择binary_crossentropy; rmsprop优化算法大多数情况下是一个很好的选择,无论问题是什么。

    4.2K30

    使用 Keras搭建一个深度卷积神经网络来识别 c验证码

    当然,在这里我们还对生成的 One-Hot 编码后的数据进行了解码,首先将它转为 numpy 数组,然后取36个字符中最大的数字的位置,因为神经网络会输出36个字符的概率,然后将概率最大的四个字符的编号转换为字符串...那么在 Keras 里面,CTC Loss 已经内置了,我们直接定义这样一个函数,即可实现 CTC Loss,由于我们使用的是循环神经网络,所以默认丢掉前面两个输出,因为它们通常无意义,且会影响模型的输出...y_pred 是模型的输出,是按顺序输出的37个字符的概率,因为我们这里用到了循环神经网络,所以需要一个空白字符的概念; labels 是验证码,是四个数字; input_length 表示 y_pred...再兵分两路,还是一路正方向,一路反方向,只不过第二次我们直接将它们的输出连起来,然后经过一个全连接,输出每个字符的概率。...评估回调 因为 Keras 没有针对这种输出计算准确率的选项,因此我们需要自定义一个回调函数,它会在每一代训练完成的时候计算模型的准确率。

    56420

    从零开始学Keras(二)

    本系列将教你如何从零开始学Keras,从搭建神经网络到项目实战,手把手教你精通Keras。相关内容参考《Python深度学习》这本书。                   ...中间层使用 relu 作为激活函数,最后一层使用 sigmoid 激活以输出一个 0~1 范围内的概率值(表示样本的目标值等于 1 的可能性,即评论为正面的可能性)。...relu(rectified linear unit,整流线性单元)函数将所有负值归零,而 sigmoid 函数则将任意值“压缩”到 [0,1] 区间内,其输出值可以看作概率值。...由于你面对的是一个二分类问题,网络输出是一个概率值(网络最后一层使用 sigmoid 激活函数,仅包含一个单元),那么最好使用 binary_crossentropy (二元交叉熵)损失。...这个对象有一个成员 history,它是一个字典,包含训练过程中的所有数据。我们来看一下。

    56210

    从零开始学Keras(三)

    本系列将教你如何从零开始学Keras,从搭建神经网络到项目实战,手把手教你精通Keras。相关内容参考《Python深度学习》这本书。...网络将输出在 46 个不同输出类别上的概率分布——对于每一个输入样本,网络都会输出一个 46 维向量,其中 output[i] 是样本属于第 i 个类别的概率。46 个概率的总和为 1。...对于这个例子,最好的损失函数是 categorical_crossentropy(分类交叉熵)。它用于衡量两个概率分布之间的距离,这里两个概率分布分别是网络输出的概率分布和标签的真实分布。...0.19679430097951914 在新数据上生成预测结果   你可以验证,模型实例的 predict 方法返回了在 46 个主题上的概率分布。...我们对所有测试数据生成主题预测。 predictions = model.predict(x_test) predictions 中的每个元素都是长度为 46 的向量。

    35230

    keras系列︱Application中五款已训练模型、VGG16框架(Sequential式、Model式)解读(二)

    . 3、H5py简述 ======== keras的已训练模型是H5PY格式的,不是caffe的.caffemodel h5py.File类似Python的词典对象,因此我们可以查看所有的键值:...as K from keras.applications.imagenet_utils import decode_predictions # decode_predictions 输出5个最高概率:...(类名, 语义概念, 预测概率) decode_predictions(y_pred) from keras.applications.imagenet_utils import preprocess_input...(x) print('Predicted:', decode_predictions(preds)) # decode_predictions 输出5个最高概率:(类名, 语义概念, 预测概率...5个最高概率:(类名, 语义概念, 预测概率) decode_predictions(y_pred) from keras.applications.imagenet_utils import preprocess_input

    9.8K82

    keras系列︱深度学习五款常用的已训练模型

    .  3、H5py简述  ========  keras的已训练模型是H5PY格式的,不是caffe的.caffemodel h5py.File类似Python的词典对象,因此我们可以查看所有的键值:...import decode_predictions# decode_predictions 输出5个最高概率:(类名, 语义概念, 预测概率) decode_predictions(y_pred) from...(x)     print('Predicted:', decode_predictions(preds))         # decode_predictions 输出5个最高概率:(类名, 语义概念..., 预测概率)  其中: .  1、如何已经把模型下载到本地  ==============  模型已经下载,不再每次从网站进行加载,可以修改以下内容。  ...#输出5个最高概率:(类名, 语义概念, 预测概率) #decode_predictions(y_pred) from keras.applications.imagenet_utils import

    1.5K10

    keras系列︱深度学习五款常用的已训练模型

    . 3、H5py简述 ======== keras的已训练模型是H5PY格式的,不是caffe的.caffemodel h5py.File类似Python的词典对象,因此我们可以查看所有的键值: 读入...import decode_predictions# decode_predictions 输出5个最高概率:(类名, 语义概念, 预测概率) decode_predictions(y_pred) from...(x) print('Predicted:', decode_predictions(preds)) # decode_predictions 输出5个最高概率:(类名, 语义概念..., 预测概率) 其中: . 1、如何已经把模型下载到本地 ============== 模型已经下载,不再每次从网站进行加载,可以修改以下内容。...输出5个最高概率:(类名, 语义概念, 预测概率) #decode_predictions(y_pred) from keras.applications.imagenet_utils import

    8K70
    领券