,可以按照以下步骤进行:
推荐的腾讯云相关产品和产品介绍链接地址:
随着深度学习的快速发展,传统的卷积神经网络(Convolutional Neural Networks, CNNs)在计算机视觉领域取得了巨大的成功。然而,对于一些涉及到时序和空间信息的任务,如视频分析、动作识别和人体姿态估计等,传统的CNNs存在一定的局限性。为了有效地处理这些时空信息,研究人员提出了一种新型的卷积神经网络模型,即时空卷积网络(Spatio-Temporal Convolutional Networks)。
我们可以使用计算机视觉和深度学习做很多事情,例如检测图像中的对象,对这些对象进行分类,从电影海报中生成标签。
新智元报道 来源:medium.mybridge.co 编辑:肖琴 【新智元导读】在6月的1400多篇机器学习相关的文章/项目中,Mybridge甄选了10篇最热文章(入选率0.7%)。主题包括:
来源:Analytics Vidhya 智能观 编译 【智能观】本文是国外知名技术网站Analytics Vidhya总结的11篇深度学习领域最佳文章,如果你还没有看过,可以找来读一读;如果你还不熟悉深度学习,这些资料将成为一份不错的资源。为了方便不同水平的人,本文还设置了文章的层次和文章中使用的工具。 1.用Python和R理解和编码神经网络 使用工具:Python(numpy),R 级别:中级 神经网络被认为是黑匣子,一般人都无法了解它的工作方式。读过这篇文章后,你将彻底改变这样的观点。 本文从感知
Python数据增强是一种用于提高机器学习模型性能的技术,通过在原始数据集上进行一些变换操作来创建新的数据,扩大数据集规模,从而提升模型的泛化能力。本文将介绍Python数据增强的概念、意义、常用方法以及在具体案例中的应用,并通过一个具体案例展示数据增强在图像分类任务中的应用。
我是个排球迷,所以让我们来看看最后一个网站,这是一个奥地利研究所的网站,他分析了当地业余联赛的比赛数据。
#Swift for TensorFlow Swift for TensorFlow 为 TensorFlow 提供了一种新的编程模型,将 TensorFlow 计算图与 Eager Execution 的灵活性和表达能力结合在了一起,同时还注重提高整个软件架构每一层的可用性。 本项目的设计基础是 Graph Program Extraction 算法,它可以让你用 Eager Execution 式的编程模型来轻松地实现代码,同时还保留 TensorFlow 计算图的高性能优势。此外,本项目还将高级的自动
人与动物都有这五种共同的感官:视觉、听觉、味觉、嗅觉和触觉。除此之外我们还有其它诸如平衡感、加速感和时间感等等。人类大脑无时不刻的在处理所有来自这些感官源的信息,这些感官中的每一个都会影响我们的决策过程。
本文共1700字,建议阅读6分钟。 本文为你精选近期Github上的13款深度学习开源工具包和数据集,一起Star和Fork吧~
本章我们来介绍如何使用Tensorflow训练一个区分不同音频的分类模型,例如你有这样一个需求,需要根据不同的鸟叫声识别是什么种类的鸟,这时你就可以使用这个方法来实现你的需求了。话不多说,来干。
如今有大量的资源可以用来学习计算机视觉技术,那我们如何从众多教程中进行选择呢?哪个值得我们去投入时间呢?
【AI100 导读】本文是《数学不好,也可以学习人工智能》系列的第四篇文章,主要内容围绕 Tensors(张量)展开。 现在的你是否已经下载好 TensorFlow 并准备好开始深度学习了呢? 但是
来源:Deephub Imba本文约2100字,建议阅读9分钟本文将介绍如何将增强应用到 TensorFlow 中的数据集的两种方法。 对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。 在这篇文章中,将介绍
对于图像相关的任务,对图像进行旋转、模糊或调整大小是常见的数据增强的方法。因为图像的自身属性与其他数据类型数据增强相比,图像的数据增强是非常直观的,我们只需要查看图像就可以看到特定图像是如何转换的,并且使用肉眼就能对效果有一个初步的评判结果。尽管增强在图像域中很常见,但在其他的领域中也是可以进行数据增强的操作的,本篇文章将介绍音频方向的数据增强方法。
本人在大三期间做了一个关于“疫苗接种”主题的舆情分析,主要涉及的技术有:爬虫(微博和知乎评论)、数据清洗、文本特征提取、建立模型(SVM、BiLSTM、TextCNN、CNN+BiLSTM、BiLSTM+Attention)、文本摘要等。
TensorFlow由Google Brain的研究人员创建,是用于机器学习和数据科学的最大的开源数据库之一。它是完整的初学者和经验丰富的数据科学家的端到端平台。TensorFlow库包括工具,预先训练的模型,机器学习指南以及一系列开放数据集。为了帮助找到所需的训练数据,本文将简要介绍一些用于机器学习的最大TensorFlow数据集。将以下列表分为图像,视频,音频和文本数据集。
在本章中,我们将学习相似性学习并学习相似性学习中使用的各种损失函数。 当每个类别的数据集都很小时,相似性学习对我们很有用。 我们将了解可用于人脸分析的不同数据集,并建立用于人脸识别,界标检测的模型。 我们将在本章介绍以下主题:
Python 的 Keras 库来学习手写数字分类,将手写数字的灰度图像(28 像素 ×28 像素)划分到 10 个类别 中(0~9) 神经网络的核心组件是层(layer),它是一种数据处理模块,它从输入数据中提取表示,紧接着的一个例子中,将含有两个Dense 层,它们是密集连接(也叫全连接)的神经层,最后是一个10路的softmax层,它将返回一个由 10 个概率值(总和为 1)组成的数组。每个概率值表示当前数字图像属于 10 个数字类别中某一个的概率 损失函数(loss function):网络如何衡量在训练数据上的性能,即网络如何朝着正确的方向前进 优化器(optimizer):基于训练数据和损失函数来更新网络的机制
视频处理与动作识别是计算机视觉中的重要任务,广泛应用于监控系统、智能家居、体育分析等领域。通过使用Python和深度学习技术,我们可以构建一个简单的动作识别系统。本文将介绍如何使用Python实现视频处理与动作识别,并提供详细的代码示例。
我们已经到达了本文最受期待的部分 - 构建模型!这就是我们大多数人首先进入数据科学领域的原因,不是吗?
“聚数据”平台整理了网上开放的免费科研数据集,以下是分类列表以及下载地址,供高校和科研机构免费下载和使用。
Keras是Python中以CNTK、Tensorflow或者Theano为计算后台的一个深度学习建模环境。
今天,计算机视觉领域的深度学习已经解决了大量关于图像识别、目标检测和图像分割等方面的问题。在这些领域中,深度神经网络表现出了极其优异的性能。
2、国产自研 Servlet 容器春季后迎来新版本。smart-servlet是目前 Gitee、Github 平台上首款,也是唯一的全栈核心技术自研的国产开源的 Servlet 容器项目。--smart-servlet
我们有一组 10 秒短视频组成的数据集,视频内容是人从事各种活动。一个深度学习模型将会观察这些视频的每一帧画面,进行理解,然后你可以用简短的自然语言问它视频内容。
A Python API for Intelligent Visual Discovery.
【磐创AI导读】:本系列文章为大家总结了24个热门的python库,查看上篇。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。一文总结数据科学家常用的Python库(上)
AI研习社按:在今年的谷歌开发者大会 I/O 2017 的讲座中,Keras 之父 Francois Chollet 被请出来向全世界的机器学习开发者进行一场对 Keras 的综合介绍以及实战示例。说起来,这个子小小的男人不但是畅销书 《Deep learning with Python》的作者,更在 Kaggle 的数据科学家中世界排名第 17 位(最高),堪称是青年 AI 工程师中的翘楚。也因此,在开发出 Keras 之后被谷歌挖走为 TensorFlow 背书。 作为号称是 TensorFlow 最好
Deepgram 是 YC 投资的一家初创公司,其业务是使用机器学习分析企业的音频数据。近日该公司开源了内部的深度学习工具 Kur(https://github.com/deepgram/kur)。该工具能够进一步帮助那些对音频分析感兴趣的人实现他们的想法。开源内容还包括10个小时的已转录音频,以10秒的片段拼接,目的是加快训练过程。 Kur 与 Keras 相似,但 Kur 进一步节略了建立和训练深度学习模型的过程。通过使深度学习更容易实现,Kur 进一步使图像识别和语音分析更容易进行。 Deepgram
短视频在当下社交媒体逐渐成为主导的视频格式。传统视频处理技术和研究一般都专注于横屏视频的理解和解析,而竖屏视频因其拍摄手法和内容重点不同,展示出与横屏视频数据不同的特性。
据北京听力协会预估数据,我国听障人群数量已过千万。而在全球范围内有4.66亿人患有残疾性听力损失,约占全世界人口的5%。聋哑人士很特殊,他们需要使用手语进行交流,其他与常人无异,我国存在特殊教育水平在各城市中发展力度具有较大差异,国家通用手语推广程度浅,但不懂手语,与听力障碍者交流会非常困难。
摘要:本篇主要介绍下腾讯2021广告大赛多模态视频广告标签baseline以及优化思路。首先介绍参加比赛的背景,相比于单模态文本理解,多模态视频内容的理解更具挑战;然后介绍了官方提供的一个baseline,包括系统说明、系统整体结构以及baseline源码介绍和运行说明;最后结合工作中的项目实践,介绍了关于优化的几个思路,主要分成从模型层面优化和样本层面优化。对于希望解锁视频内容理解的小伙伴可能有所帮助。
蔬菜识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Django框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
9月28日,谷歌在官方博客上宣布,将含有800万个Youtube 视频URL 的视频数据库开源,视频总时长达到了50万个小时。一并发布的还有从包含了4800个知识图谱分类数据集中提取的视频级别标签。
您是否有时侯觉得机器学习内容太广泛而无法紧跟脚步?当然会有这种感觉。下面是去年自然语言处理(NLP)的主要发展方向:
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 一、关键词提取概述 关键词是能够表达文档中心内容的词语,常用于计算机系统标引论文内容特征、信息检索、系统汇集以供读者检阅。关键词提取是文本挖掘领域的一个分支,是文本检索、文档比较、摘要生成、文档分类和聚类等文本挖掘研究的基础性工作。 从算法的角度来看,关键词提取算法主要有两类:无监督关键词提取方法和有监督关键词提取方法。 1、无监督关键词提取方法 不需要人工标注的语料,利用某些方法发现文本中比较重要的词作为关键词,进
当我们进入一个新的领域,最难的事情往往是入门和上手操作。在深度学习领域,第一件事(通常也是最关键的)就是处理数据,所以我们在写Python代码时,需要一个更有组织的方法来加载和使用图像数据。
原标题 | New Datasets for Action Recognition
人工智能无疑是2017年最火爆的技术,许多外行的朋友想学习却不知道从何下手,所以特意将此文翻译过来,供大家参考。可以在短期之内进入这个领域。这些视频大多数都可以在国内的网站上找到。 这个“前十名单”是根据最佳内容创建的,而不是根据评论数量。为了帮助你选择合适的框架,我们首先从一个比较流行的Python DL库的视频开始。。让我们开始! 1.概述:比较深度学习框架(96K次) - 5分钟 在学习Python,先理解5个最流行的深度学习框架-SciKit Learn,TensorFlow,Theano,Ke
大多数的时间序列数据主要用于交易生成预测。无论是预测产品的需求量还是销售量,航空公司的乘客数量还是特定股票的收盘价,我们都可以利用时间序列技术来预测需求。
计算机视觉(CV)是当下人工智能落地最广泛的领域,也一直是目前深度学习最热的研究领域。人的大脑皮层, 有近 70% 都是在处理视觉信息,是人类获取信息最主要的渠道。在计算机视觉(CV)出现之前,图像对于计算机来说是黑盒的状态。如果计算机想要在现实世界发挥重要作用,就必须看懂图像里的内容!这就是计算机视觉(CV)要解决的问题。 图像分类作为计算机视觉(CV)中最基础的一个任务,它的目标是将不同的图像划分到不同的类别,实现最小的分类误差。理解图像分类的逻辑可以快速帮助AI小白入门计算机视觉领域(CV)。
计算机视觉(CV)是当下人工智能落地最广泛的领域,也一直是目前深度学习最热的研究领域。人的大脑皮层, 有近 70% 都是在处理视觉信息,是人类获取信息最主要的渠道。在计算机视觉(CV)出现之前,图像对于计算机来说是黑盒的状态。如果计算机想要在现实世界发挥重要作用,就必须看懂图像里的内容!这就是计算机视觉(CV)要解决的问题。 图像分类作为计算机视觉(CV)中最基础的一个任务,它的目标是将不同的图像划分到不同的类别,实现最小的分类误差。理解图像分类的逻辑可以快速帮助AI小白入门计算机视觉领域(CV)。 图像分
选自arXiv 作者:赵行等 机器之心编译 参与:刘晓坤、蒋思源 近日,MIT 与 Facebook 共同提出了用于动作分类和定位的大规模视频数据集的标注方法,新的框架平均只需 8.8 秒就能标注一个剪辑,相比于传统的标注过程节省了超过 95% 的标注时间,继而证明了该数据集可以有效预训练动作识别模型,经过微调后能显著提高在较小规模数据集上的最终评估度量。 数据集链接:http://slac.csail.mit.edu/ 图像分类和目标检测领域近年来取得了重大的平行进展。可以认为,这些进展归功于数据集的质量
项目来源:https://www.kaggle.com/c/word2vec-nlp-tutorial/
【视频】Copula算法原理和R语言股市收益率相依性可视化分析 R语言时间序列GARCH模型分析股市波动率 【视频】量化交易陷阱和R语言改进股票配对交易策略分析中国股市投资组合 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 R语言量化交易RSI策略:使用支持向量机SVM R语言资产配置: 季度战术资产配置策略研究 R语言动量交易策略分析调整后的数据 TMA三均线股票期货高频交易策略的R语言实现 R语言时间序列:ARIMA / GARCH模型的交易策略在外汇市场预测应用 R语言基于Garch波动率预测的区制转移交易策略 r语言多均线股票价格量化策略回测 使用R语言对S&P500股票指数进行ARIMA + GARCH交易策略 Python基于粒子群优化的投资组合优化研究 R语言Fama-French三因子模型实际应用:优化投资组合 R语言动量和马科维茨Markowitz投资组合(Portfolio)模型实现 Python计算股票投资组合的风险价值(VaR) R语言Markowitz马克维茨投资组合理论分析和可视化 R语言中的广义线性模型(GLM)和广义相加模型(GAM):多元(平滑)回归分PYTHON用RNN神经网络LSTM优化EMD经验模态分解交易策略分析股票价格MACD R语言深度学习:用keras神经网络回归模型预测时间序列数据 【视频】CNN(卷积神经网络)模型以及R语言实现回归数据分析 Python TensorFlow循环神经网络RNN-LSTM神经网络预测股票市场价格时间序列和MSE评估准确性 数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 RNN循环神经网络 、LSTM长短期记忆网络实现时间序列长期利率预测 结合新冠疫情COVID-19股票价格预测:ARIMA,KNN和神经网络时间序列分析 深度学习:Keras使用神经网络进行简单文本分类分析新闻组数据 用PyTorch机器学习神经网络分类预测银行客户流失模型 PYTHON用LSTM长短期记忆神经网络的参数优化方法预测时间序列洗发水销售数据 Python用Keras神经网络序列模型回归拟合预测、准确度检查和结果可视化 Python用LSTM长短期记忆神经网络对不稳定降雨量时间序列进行预测分析 R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告 R语言深度学习:用keras神经网络回归模型预测时间序列数据 Matlab用深度学习长短期记忆(LSTM)神经网络对文本数据进行分类 R语言KERAS深度学习CNN卷积神经网络分类识别手写数字图像数据(MNIST) MATLAB中用BP神经网络预测人体脂肪百分比数据 Python中用PyTorch机器学习神经网络分类预测银行客户流失模型 R语言实现CNN(卷积神经网络)模型进行回归数据分析 SAS使用鸢尾花(iris)数据集训练人工神经网络(ANN)模型 【视频】R语言实现CNN(卷积神经网络)模型进行回归数据分析 Python使用神经网络进行简单文本分类 R语言用神经网络改进Nelson-Siegel模型拟合收益率曲线分析 R语言基于递归神经网络RNN的温度时间序列预测 R语言神经网络模型预测车辆数量时间序列 R语言中的BP神经网络模型分析学生成绩 matlab使用长短期记忆(LSTM)神经网络对序列数据进行分类 R语言实现拟合神经网络预测和结果可视化 用R语言实现神经网络预测股票实例 使用PYTHON中KERAS的LSTM递归神经网络进行时间序列预测 python用于NLP的seq2seq模型实例:用Keras实现神经网络机器翻译 用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
本基于javaweb+springmvc实现视频数据网站后台管理系统,系统主要采用java,spring,springmvc,mybatis,mysql数据库,JSP页面开发技术,系统前端界面主要采用echarts,vue,html,css,javascript等技术实现,主要通过互联网采集爬虫获取互联网视频数据,对视频数据进行数据分析整合,数据处理成JSON格式,通过前端javascript解析JSON完成数据可视化的动态展示。
论文地址:https://arxiv.org/pdf/1805.07935.pdf
领取专属 10元无门槛券
手把手带您无忧上云