Python大数据分析 一、seaborn简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到...seaborn中内置的若干函数对数据的分布进行多种多样的可视化。...seaborn自带的鸢尾花数据集,格式为数据框 iris = sns.load_dataset('iris') #分离出setosa类的花对应的属性值 setosa = iris.loc[iris.species...,其主要参数如下: x,y:代表待分析的成对变量,有两种模式,第一种模式:在参数data传入数据框时,x、y均传入字符串,指代数据框中的变量名;第二种模式:在参数data为None时,x、y直接传入两个一维数组...,不依赖数据框 data:与上一段中的说明相对应,代表数据框,默认为None kind:字符型变量,用于控制展示成对变量相关情况的主图中的样式 color:控制图像中对象的色彩 height:控制图像为正方形时的边长
一、简介 seaborn是Python中基于matplotlib的具有更多可视化功能和更优美绘图风格的绘图模块,当我们想要探索单个或一对数据分布上的特征时,可以使用到seaborn中内置的若干函数对数据的分布进行多种多样的可视化... cumulative:bool型变量,用于控制是否绘制核密度估计的累计分布,默认为False shade_lowest:bool型变量,用于控制是否为核密度估计中最低的范围着色,主要用于在同一个坐标轴中比较多个不同分布总体...,反映在图像上的闭环层数 下面我们来看几个示例来熟悉kdeplot中上述参数的实际使用方法: 首先我们需要准备数据,本文使用seaborn中自带的鸢尾花数据作为示例数据,因为在jupyter notebook...matplotlib.pyplot as plt %matplotlib inline #加载seaborn自带的鸢尾花数据集,格式为数据框 iris = sns.load_dataset('iris...,x、y均传入字符串,指代数据框中的变量名;第二种模式:在参数data为None时,x、y直接传入两个一维数组,不依赖数据框 data:与上一段中的说明相对应,代表数据框,默认为None kind
受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,你就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...散点图矩阵(SPLOM)允许你可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。数据集中的每一行都显示为每个图中的一个点。你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起! ?...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框...你可以对大多数函数使用 category_orders 参数来告诉 px 你的分类数据“好”、“更好”、“最佳” 等具有重要的非字母顺序,并且它将用于分类轴、分面绘制 和图例的排序。
受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...散点图矩阵(SPLOM)允许您可视化多个链接的散点图:数据集中的每个变量与其他变量的关系。 数据集中的每一行都显示为每个图中的一个点。 你可以进行缩放、平移或选择操作,你会发现所有图都链接在一起!...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框...您可以对大多数函数使用 category_orders 参数来告诉 px 您的分类数据“好”、“更好”、“最佳” 等具有重要的非字母顺序,并且它将用于分类轴、分面绘制 和图例的排序。
受 Seaborn 和 ggplot2 的启发,它专门设计为具有简洁,一致且易于学习的 API :只需一次导入,您就可以在一个函数调用中创建丰富的交互式绘图,包括分面绘图(faceting)、地图、动画和趋势线...在这个最终版本中,让我们在这里调整一些显示,因为像“gdpPercap” 这样的文本有点难看,即使它是我们的数据框列的名称。...通过这些,您可以在单个图中可视化整个数据集以进行数据探索。...接受整个整洁的 dataframe 的列名作为输入(而不是原始的 numpy 向量)也允许 px 为你节省大量的时间,因为它知道列的名称,它可以生成所有的 Plotly.py 配置用于标记图例、轴、悬停框...您可以对大多数函数使用 category_orders 参数来告诉 px 您的分类数据“好”、“更好”、“最佳” 等具有重要的非字母顺序,并且它将用于分类轴、分面绘制 和图例的排序。
下面是ggplot2绘图体系的一些关键概念: 数据:ggplot2使用数据框作为数据输入的基本单位。数据框是一个二维表格,其中每一列代表一个变量,每一行代表一个观察值。...通过组合和调整这些概念,ggplot2可以绘制出高度可定制的、美观且具有统计意义的图形。它的语法简洁明了,易于学习和使用,同时也具有很高的灵活性和扩展性。...Seaborn是一个建立在Matplotlib之上的Python数据可视化库,轻松创建各种统计图表和美化数据可视化,提供了高级接口和定制化选项,使数据科学家和分析师能够更轻松地制作漂亮且具有信息价值的图表...它提供了许多用于绘制统计图表的高级函数,如散点图、直方图、小提琴图和回归图等。 美观的默认样式:Seaborn具有吸引人的默认绘图样式和颜色主题,使图表在外观上更具吸引力。...patches, _= ax1.pie(sizes,shadow=False, counterclock=False, startangle=90, colors=colors) 3.添加细节和修改 #添加饼图的图例和调整图例的位置
导语 Seaborn和Matplotlib是Python最强大的两个可视化库。Seaborn其默认主题让人惊讶,而Matplotlib可以通过其多个分类为用户打造专属功能。...0 3 点图、线图为例 #使用numpy产生数据 x=np.arange(-5,,0.1) y=x* #创建窗口、子图 #方法1:先创建窗口,再创建子图。...4 一个窗口多个图 #一个窗口,多个图,多条数据 sub1=plt.subplot(,facecolor=(0.1843,0.3098,0.3098)) #将窗口分成2行1列,在第1个作图,并设置背景色...0 10 相关热力图 以tips数据为例: # 相关性热力图 sns.heatmap(tips.corr()) ?...#看图说话:热力图可用来显示两变量之间的相关性,在这里两变量间对应的矩形框的颜色越浅,代表两者之间越具有相关性 0 11 核密度估计图 #kde plot图 sns.kdeplot(tips['total_bill
如果未指定颜色,Matplotlib 将自动遍历一组默认颜色,来显示多个线条。...还有许多其他关键字参数可用于微调图的外观; 对于更多详细信息,我建议使用 IPython 的帮助工具查看plt.plot()函数的文档字符串(参见“IPython 中的帮助和文档”)。...标注绘图 作为本节的最后一部分,我们将简要介绍图表的标签:标题,轴标签和简单图例。...更多信息请参阅 Matplotlib 文档以及每个函数的文档字符串。 当在单个轴中显示多条线时,创建标记每种线条类型的图例是很有用的。...指定和格式化图形图例的更多信息,可以在plt.legend的文档字符串中找到;此外,我们将在“自定义图例”中,介绍一些更高级的图例选项。
打开ArcMap,新建一个地图文档,在目录栏下点击文件夹连接 连接数据所在的文件夹。 加载文件夹中的图层数据:省会城市、地级市驻地、主要公路、国界线、省级行政区、Hillshade_10k。...2 标注图层要素 在图层面板中,右键点击图层:[省级行政区],执行[属性]命令,在出现的[图层属性]对话框中,点击[标注]选项页,确认标注字段为:[Name],一定要给左上角标注图层中的要素方框打钩,然后点击...通过标准工具栏上的[放大、缩小、平移]按钮,可以调整地图版面中数据框的显示比例、范围,如下图所示:适当调整使数据只显示西南部分。 然后添加各种元素到地图版面中。...制作一个完整的地图至少需要标题、图例、指北针、比例尺四种元素。 点击插入工具栏插入文本,编辑标题,输入西南地区全图。双击可以编辑,调整大小和位置。...西南地图全图的地图版面设计就完成了,确定后显示的地图为: 制作好的地图可以导出为多种文件格式:比如JPG,PDF等。 执行菜单命令:[文件]->[导出地图] 下图为导出后的西南地区全图:
可以使用另一个属性 "origin" 为图例条目着色,并使用两个库的附加变量 "displacement" 控制点的大小。...我们将 DataFrame 作为数据传递,上述两个变量为 x 和 y,而 'origin' 作为图例颜色。...这是计数图的语法 Seaborn 我们使用 FacetGrid 命令根据变量"origin"在网格上显示多个图。...在 Seaborn 中,我们使用 distplot 命令并传递数据框的名称,要绘制的列的名称。我们还可以使用"aspect"设置"宽高比"来调整绘图的高度和宽度。...我们可以通过调整 bin 大小在 Seaborn 中获得相同的图。
7.个性化颜色条 图例可以将离散的点标示为离散的标签。对于建立在不同颜色之上的连续的值(点线面)来说,标注了的颜色条是非常方便的工具。...Matplotlib 提供了子图表的概念来实现这一点:单个图表中可以包括一组小的 axes 用来展示多个子图表。这些子图表可以是插图,网格状分布或其他更复杂的布局。...同样,注意到当使用 Matplotlib 交互式展示是,这样的旋转可以通过鼠标点击和拖拽来实现。 框线图和表面图 使用网格数据生成的三维图表还有框线图和表面图。...这两种图表将网格数据投射到特定的三维表面,能够使得结果图像非常直观和具有说服力。...表面图类似框线图,区别在于每个框线构成的多边形都使用颜色进行了填充。
使用这种方法,散点的颜色和大小都能用来展示数据信息,在希望展示多个维度数据集合的情况下很直观。...7.个性化颜色条 图例可以将离散的点标示为离散的标签。对于建立在不同颜色之上的连续的值(点线面)来说,标注了的颜色条是非常方便的工具。...Matplotlib 提供了子图表的概念来实现这一点:单个图表中可以包括一组小的 axes 用来展示多个子图表。这些子图表可以是插图,网格状分布或其他更复杂的布局。...框线图和表面图 使用网格数据生成的三维图表还有框线图和表面图。这两种图表将网格数据投射到特定的三维表面,能够使得结果图像非常直观和具有说服力。...') ax.set_title('wireframe'); 表面图类似框线图,区别在于每个框线构成的多边形都使用颜色进行了填充。
使用 seaborn 进行稍微复杂的数据可视化。 5. 使用 Matplotlib 自定义 pandas 或 seaborn 可视化。 下图非常重要,有助于理解图的不同术语。 ?...大部分术语很直接易懂,需要牢记的是 Figure 是可能包含一或多个 axes 的最终图像。Axes 代表单个图。一旦你理解这些是什么以及如何通过面向对象的 API 评估它们,其余步骤就很简单了。...我主要关注最常见的绘图任务,如标注轴、调整图形界限(limit)、更新图标题、保存图像和调整图例。...数据包括 2014 年的销售交易额。为简短起见,我将总结这些数据,列出前十名客户的采购次数和交易额。绘图时我将对各列进行重命名。...图表 目前,我们所做的所有改变都是针对单个图表。我们还能够在图像上添加多个表,使用不同的选项保存整个图像。 如果我们确定要在同一个图像上放置两个表,那么我们应该对如何做有一个基础了解。
使用这种方法,散点的颜色和大小都能用来展示数据信息,在希望展示多个维度数据集合的情况下很直观。...7、个性化颜色条 图例可以将离散的点标示为离散的标签。对于建立在不同颜色之上的连续的值(点线面)来说,标注了的颜色条是非常方便的工具。...Matplotlib 提供了子图表的概念来实现这一点:单个图表中可以包括一组小的 axes 用来展示多个子图表。这些子图表可以是插图,网格状分布或其他更复杂的布局。...(3)框线图和表面图 使用网格数据生成的三维图表还有框线图和表面图。这两种图表将网格数据投射到特定的三维表面,能够使得结果图像非常直观和具有说服力。...') ax.set_title('wireframe'); 表面图类似框线图,区别在于每个框线构成的多边形都使用颜色进行了填充。
领取专属 10元无门槛券
手把手带您无忧上云