首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用Kaggle经典案例教你用CNN做图像分类!

-10 - Object Recognition in Images ),这个比赛现在已经关闭了,但不妨碍我们来去通过它学习一下卷积神经网络做图像识别的代码结构。...首先将训练数据集重塑为 [50000, 3072] 的形状,利用 minmax 来进行归一化。最后再将图像重塑回原来的形状。...卷积网络 完成了数据的预处理,我们接下来就要开始进行建模。 首先我们把一些重要的参数设置好,并且将输入和标签 tensor 构造好。 ?...我们把训练结果加载进来,设置 test 的 batchs_size 为 100,来测试我们的训练结果。最终我们的测试准确率也基本在 70% 左右。 总结 至此,我们实现了两种图像分类的算法。...第二种我们利用 CNN 实现了分类,最终的测试结果大约在 70% 左右,相比 KNN 的 30% 准确率,它的分类效果表现的相当好。

1.3K60

tensorflow的图像预处理函数

对图像进行预处理,可以尽量避免模型受到。大部分图像识别问题中,通过图像预处理过程可以提高模型的准确率。...这个函数第一个参数为原始图像,# 第二个和第三个参数为调整后图像的大小,method参数给出了调整图像大小的算法。...# 通过tf.image.central_crop函数可以按比例剪裁图像。这个函数的第一个参数为原始图# 像,第二个为调整比例,这个比例需要时一个(0,1]的实数。...虽然这个问题可以通过收集更多的训练数据来解决,但是通过随机翻转识别训练图像的方式可以在零成本的情况下很大程度地缓解该问题。所以随机翻转训练图像时一种很常用的图像预处理方式。...这节将给出一个完整的样例程序展示如何将不同的图像处理函数结合成一个完成了从图像片段截取,到图像大小调整再到图像翻转及色彩调整的整个图像预处理过程。

2.5K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于 CNN 的视频压缩预处理研究

    少部分研究者根据视频压缩标准,基于传统的信号处理技术来进行预处理以提高视频质量,这样做复杂度低但是效率有限。...一个众所周知的做法是去噪 CNN (DnCNN),利用带跳跃连接的 CNN 来学习图像的残差。尽管 DncCNN 已被证明可以有效地减少高斯噪声,但是其作为编码标准预处理器的效果还未可知。...不同的研究者提出了不同的基于 CNN 的去噪方法,每种方法都各有其优缺点。本文选取了 DnCNN 网络作为预处理器。...DnCNN 的输入是如同 形式的噪声图像,去噪的目的是通过调整 (标准差为 的加性高斯噪声)从噪声图像 中恢复出干净图像 。模型网络架构如图 1 所示。...数据集 训练:对于灰度图像去噪,按照原始模型数据集使用 400 张大小为 180x180 的图像,patch 大小设置为 40x40 并裁剪 128x1600 patch 来训练模型。

    1.8K50

    开发 | 用 Kaggle 经典案例教你用 CNN 做图像分类!

    in Images, https://www.kaggle.com/c/cifar-10),这个比赛现在已经关闭了,但不妨碍我们来去通过它学习一下卷积神经网络做图像识别的代码结构。...首先将训练数据集重塑为 [50000, 3072] 的形状,利用 minmax 来进行归一化。最后再将图像重塑回原来的形状。...卷积网络 完成了数据的预处理,我们接下来就要开始进行建模。 首先我们把一些重要的参数设置好,并且将输入和标签 tensor 构造好。 ?...我们把训练结果加载进来,设置 test 的 batchs_size 为 100,来测试我们的训练结果。最终我们的测试准确率也基本在 70% 左右。 总结 至此,我们实现了两种图像分类的算法。...第二种我们利用 CNN 实现了分类,最终的测试结果大约在 70% 左右,相比 KNN 的 30% 准确率,它的分类效果表现的相当好。

    92260

    AI从入门到放弃:CNN的导火索,用MLP做图像分类识别?

    作者:郑善友 腾讯MIG后台开发工程师 导语: 在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别;但残酷的现实是,MLP做这事的效果并不理想。...本文通过使用MLP做图片分类识别的尝试作为思路指引,实为下一篇CNN相关笔记的引子文章。 本文的文档和代码,传送门: github项目地址 一....上一篇笔记的传送门:《AI从入门到放弃:BP神经网络算法推导及代码实现笔记》 ---- 二. 用MLP做图像分类识别?...在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别,没毛病 作为上篇笔记学习的延续,以及下一篇CNN的药引,使用MLP来做图片分类识别,实在是个不错的过度例子。...告诉你怎么制作图片的h5文件,以后做cnn等模型训练时,非常有用 以我主子为例子: 原图: 自己处理成64*64的图片,当然你也可以写代码做图片处理,我懒,交给你实现了: python代码,用到h5py

    1.9K101

    CNN中各层图像大小的计算

    CNN刚刚入门,一直不是很明白通过卷积或者pooling之后图像的大小是多少,看了几天之后终于搞清楚了,在这里就结合keras来说说各层图像大小是怎么计算的,给刚入门的一点启发吧!...代码实例 weight_decay = 0.0001 # 使用sequentia模型 chars_model = Sequential() # 第一层卷积,filter大小4*4,数量32个,原始图像大小...,使用momentum+decay sgd = SGD(l2=0.0, lr=0.0001, decay=1e-6, momentum=0.9, nesterov=True) # 损失函数定义为对数损失...chars_model.compile(loss='categorical_crossentropy', optimizer=sgd, class_mode="categorical") # monitor定义为val_loss..., monitor='val_loss', verbose=1, save_best_only=True) # batch为128,epoch为4000个,validation_split=0.1 chars_model.fit

    2.5K80

    AI从入门到放弃2:CNN的导火索,用MLP做图像分类识别?

    上一篇笔记的传送门:《AI从入门到放弃:BP神经网络算法推导及代码实现笔记》(编辑注:为方便大家阅读,此处添加的是人工智能头条此前发布的文章链接) ▌二、用MLP做图像分类识别?...在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别,没毛病。...作为上篇笔记学习的延续,以及下一篇CNN的药引,使用MLP来做图片分类识别,实在是个不错的过度例子。通过这个例子,从思路上引出一系列的问题,我不卖关子,自问自答吧,即: MLP能做图片分类识别吗?...--> 答案是是可以的,上一篇我们是拟合非线性分类函数,这里是拟合图像特征,数学本质没区别。 MLP做这个事情效果如何?--> 个人认知内,只能说一般一般。...告诉你怎么制作图片的h5文件,以后做cnn等模型训练时,非常有用 以我主子为例子: 原图: 自己处理成64*64的图片,当然你也可以写代码做图片处理,我懒,交给你实现了: python代码,用到h5py

    39820

    AI从入门到放弃2:CNN的导火索,用MLP做图像分类识别?

    上一篇笔记的传送门:《AI从入门到放弃:BP神经网络算法推导及代码实现笔记》(编辑注:为方便大家阅读,此处添加的是人工智能头条此前发布过的文章链接) ▌二、用MLP做图像分类识别?...在没有CNN以及更先进的神经网络的时代,朴素的想法是用多层感知机(MLP)做图片分类的识别,没毛病。...作为上篇笔记学习的延续,以及下一篇CNN的药引,使用MLP来做图片分类识别,实在是个不错的过度例子。通过这个例子,从思路上引出一系列的问题,我不卖关子,自问自答吧,即: MLP能做图片分类识别吗?...--> 答案是是可以的,上一篇我们是拟合非线性分类函数,这里是拟合图像特征,数学本质没区别。 MLP做这个事情效果如何?--> 个人认知内,只能说一般一般。...告诉你怎么制作图片的h5文件,以后做cnn等模型训练时,非常有用 以我主子为例子: 原图: 自己处理成64*64的图片,当然你也可以写代码做图片处理,我懒,交给你实现了: python代码,用到h5py

    57320

    matlab实现图像预处理的很多方法

    );                     % 图像黑白转换 imshow(BW),                                      % 显示处理后的图像...]); axis on;                  %显示坐标系 J=imadjust(I1,[0.1 0.5],[]); %局部拉伸,把[0.1 0.5]内的灰度拉伸为[0 1] subplot...axis on;                  %显示坐标系 K=imadjust(I1,[0.3 0.7],[]); %局部拉伸,把[0.3 0.7]内的灰度拉伸为[0 1] subplot...'); I1=rgb2gray(I);                %将彩色图像转化灰度图像  threshold=graythresh(I1);        %计算将灰度图像转化为二值图像所需的门限...%显示坐标系                    se=strel('disk',1);     %采用半径为1的圆作为结构元素 I2=imopen(I1,se);         %开启操作

    84920

    计算机视觉|视频图像的预处理

    提出问题 1、图像预处理的意义 在分析图像问题时,由于环境和拍摄自身因素影响,使得在需要处的图像存在一定的问题,同时由于操作的要求,需要对图像进行一定的转换,所以,在处理图像之前,要对图像做出预处理,方便后期操作...解决方案 2、图像预处理的主要方面 2.1图像灰度化 图像灰度化的原理就是在RGB模型中,假定三个通道的值相等,然后用统一的灰度值表征该点的色彩信息,灰度值的范围是0到255。...中值滤波的本质就是一种基于统计排序理论的非线性滤波法,其基本原理就是将图像中以某像素点为中心的窗口范围内的所有像素点的灰度值(包括该中心像素点)进行排序,然后将灰度序列的中间值赋给该中心像素点。...以3*3大小的窗口为例,假设中心像素点的8邻域中,与中心像素点灰度差分的绝对值大于阈值T的相邻像素点的个数为m,则当m≤2时,该中心像素点为平坦区域点;当2为图像边缘点;当m≥6...总结 在处理图象时不能忽略去除噪声和灰度化,对于图像的预处理方法很多,每个方法都有自己的优缺点,这里都只是介绍了其中一种,实际中运用时需要看哪种方法适用于当前情况,权衡之后选择出最好的方法。

    1.6K31

    机器视觉检测中的图像预处理方法

    本文以Dalsa sherlock软件为例,一起来了解一下视觉检测中平滑模糊的图像处理方法。 ? 1.观察灰度分布来描述一幅图像称为空间域,观察图像变化的频率被称为频域。...由于机械振动引起的图像跳动,如下图: ? 使用一个可以调整过滤内核尺寸的差分过滤器,例如过滤尺寸为4的内核为{-1,0,0,1}或者过滤尺寸为6的内核为{-1,0,0,0,0,1}。...这个过滤器在水平方向,垂直方向或者两者都有的方向扫描输入图像,得到输出图像。 应用一个过滤尺寸为16的,“X”方向过滤的过滤器,增强图中对比度比较低的边缘。 ?...下侧的图像显示了一个非常缓慢和扩散过渡的边缘,右侧的图像显示了应用了一个过滤尺寸为10的chatter edges结果的图像。 ?...主要的方法就是将图像的每一个点都用sobel算子做卷积:一个用来检测垂直边缘,一个用来检测水平边缘,而最后两个卷积的最大值将作为该点的输出,即检测后的灰度。

    2.6K21

    基于CNN的图像增强之去模糊

    图像模糊产生的原因非常多, 主要如下: (1)相机抖动. □ 拍摄时相机不稳. □ 全部画面被模糊.  (2)物体的运动. □ 部分物体运动. □ 不同区域模糊不同....今天在看Learning Deep CNN Denoiser Prior for Image Restoration (CVPR, 2017) 的文章,里面涵盖的内容非常全,其中模糊也是其中主要工作之一...1、论文原理 论文为图像恢复,主要包括图像去噪、图像去模糊和图像超分辨率重建。本博客主要关注的是模糊。 论文将图像恢复统一为一个操作,如论文所述:即目标要还原出干净的x....其中空洞因子(dilated factors,3×3)被依次设置为,1,2,3,4,3,2,1。每一个中间层的feature maps个数均为64....学习噪声水平间隔较小的特定的去噪模型。 2、论文实践复现效果如下图所示: 不过比较难的程序输入是需要同时指定其模糊矩阵图,这个在实际应用中还有等于进一步细化。

    75620

    原来CNN是这样提取图像特征的。。。

    本文主要介绍卷积层提取特征的原理过程,文章通过几个简单的例子,展示卷积层是如何工作的,以及概述了反向传播的过程,将让你对卷积神经网络CNN提取图像特征有一个透彻的理解。...在CNN中,我们称之为卷积层(convolution layer),卷积核在图像上不断滑动运算,就是卷积层所要做的事情。同时,在内积结果上取每一局部块的最大值就是最大池化层的操作。...还以人脸为例,我们使用一个卷积核检测眼睛位置,但是不同的人,眼睛大小、状态是不同的,如果卷积核太过具体化,卷积核代表一个睁开的眼睛特征,那如果一个图像中的眼睛是闭合的,就很大可能检测不出来,那么我们怎么应对这中问题呢...绿色箭头代表前向传播,红色代表为反向传播过程,x、y是权重参数,L为误差,L对x、y的导数表示误差L的变化对x、y的影响程度,得到偏导数delta(x)后,x* = x-η*delta(x),其中η为学习率...4.总结 本文主要讲解基本CNN的原理过程,卷积层和池化层可以提取图像特征,经过反向传播最终确定卷积核参数,得到最终的特征,这就是一个大致的CNN提取特征的过程。

    2.3K40

    原来CNN是这样提取图像特征的

    本文主要介绍卷积层提取特征的原理过程,文章通过几个简单的例子,展示卷积层是如何工作的,以及概述了反向传播的过程,将让你对卷积神经网络CNN提取图像特征有一个透彻的理解。...在CNN中,我们称之为卷积层(convolution layer),卷积核在图像上不断滑动运算,就是卷积层所要做的事情。同时,在内积结果上取每一局部块的最大值就是最大池化层的操作。...还以人脸为例,我们使用一个卷积核检测眼睛位置,但是不同的人,眼睛大小、状态是不同的,如果卷积核太过具体化,卷积核代表一个睁开的眼睛特征,那如果一个图像中的眼睛是闭合的,就很大可能检测不出来,那么我们怎么应对这中问题呢...绿色箭头代表前向传播,红色代表为反向传播过程,x、y是权重参数,L为误差,L对x、y的导数表示误差L的变化对x、y的影响程度,得到偏导数delta(x)后,x* = x-η*delta(x),其中η为学习率...的原理过程,卷积层和池化层可以提取图像特征,经过反向传播最终确定卷积核参数,得到最终的特征,这就是一个大致的CNN提取特征的过程。

    1.8K40

    基于SIFT特征的图像检索 vs CNN

    下面简单的对比一下sift和cnn的检索结果:(基于此改进的版本好多:各种sift;cnn(vgg-fc3;vgg(resnet、inception等)-conv;)+PCA等,各种特征融合等等) 检索库...cnn检索结果: 原图: ? 检索图: ? 原图: ? 检索图: ? 原图: ? 检索图: ? 原图: ? 检索图: ?...下面是基于SIFT检索的代码,CNN的还是自己撸吧: # coding: utf-8 import cv2 import numpy as np import os from sklearn.cluster...# #### 1、SIFT提取每幅图像的特征点 # #### 2、聚类获取视觉单词中心(聚类中心),构造视觉单词词典 # #### 3、将图像特征点映射到视觉单词上,得到图像特征 # #### 4、计算待检索图像的最近邻图像...,找出最像的几个 img:待检索的图像 img_dataset:图像数据库 matrix num_close:显示最近邻的图像数目 centures:聚类中心 img_paths

    99720

    亚马逊:用CNN进行图像分类的Tricks

    但是现在这些提升并不仅仅来源于架构的修正,还来源于训练过程的改进:包括损失函数的优化、数据预处理方法的提炼和最优化方法的提升等。...在过去几年中,卷积网络与图像分割出现大量的改进,但大多数在文献中只作为实现细节而简要提及,而其它还有一些技巧甚至只能在源代码中找到。...在本文中,我们将测试一系列的微调方法,并通过控制变量实验评估它们对最终准确率的影响。我们将展示通过组合不同的微调方法,我们可以显著地改善多种 CNN 模型。...本研究还表明,图像分类准确率的提高可以在其他应用领域(如目标检测和语义分割)中实现更好的迁移学习性能。...随机以 [3/4, 4/3] 为长宽比、[8%, 100%] 为比例裁减矩形区域,然后再缩放为 224*224 的方图。 以 0.5 的概率随机水平翻转图像。

    70910

    毕业设计:基于CNN的图像分类算法

    所以如果不读硕的同学建议不要选这方面的题目。 这次我介绍的毕设题目是:基于卷积神经网络的图像分类算法的工程实现。先说一下电脑配置和环境依赖版本。...拍摄角度包括航拍、红外图像、可见光图像、船上拍摄、船舶加海天背景等。其中军舰图像占50%,其他图像占50%。该毕设问题即解决,区分军舰和其他船舶的问题。 图像大致如下: ?...原始论文中,图片大小为33232,即长宽为32的三通道图片。 而在本实验中,因为原始图片本身很大,在这里我统一设置成了3224224的图片。...原始论文为: self.fc1 = nn.Linear(16 * 5 * 5, 120) 我改为了: self.fc1 = nn.Linear(16 * 53 * 53, 120) 可根据上面的公式自行计算...从该曲线可以看出,当batch_size为32,学习率为0.001时,正确率最高。 随后在测试集上表现如下: ? image.png

    2.3K10

    基于卷积神经网络CNN的图像分类

    基于卷积神经网络CNN的图像分类+基于Tkinter自制GUI界面点击分类 大家好,我是Peter~ 本文主要包含两个方向的内容: 如何使用卷积神经网路对一份数据进行cats和dogs的分类:图像数据生成...、搭建CNN模型及可视化、模型训练与预测、损失精度可视化 将构建的CNN网络模型保存后,基于Tkinter制作一个简单的GUI界面,选择图片运行立即显示分类结果 过程详解,代码注释极其详细,源码运行即可出结果...构建CNN网络 构建的CNN网络: model=Sequential() # 卷积层1 model.add(Conv2D(32,(3,3),activation='relu',input_shape=...导入模型 导入搭建好的CNN模型的h5文件: # 导入训练好的模型 model = load_model("model_cats_dogs_10category.h5") 图像窗口初始化 GUI界面的窗口参数初始化...") # 背景色 # Label控件:指定的窗口top中显示的文本和图像 label = Label(top, background="#CDCDCD", font=("arial", 15, "bold

    1.4K20

    基于内容的图像检索技术综述-CNN方法

    而图像检索的发展目标是希望模型又快又准,因此兴起了基于CNN的方法,从原来AlexNet、VGGnet,到体积小一点的Inception、Resnet系列,再到DenseNet系列无不体现出了这一趋势。...和Resnet不同的是,这里的连接方式得到的feature map做的是concat操作,而resnet中做的是elementwise操作。...图25 SE-ResNet 十、netVLAD 相对于传统的人工设计特征,CNN已经在图像特征提取上显示出了强大的功力。在图像检索问题中,目前有基于全局和基于局部两种卷积神经网络特征表示方法。...例如使用滑动窗口来得到图像区域时,由于没有考虑到图像的颜色、纹理、边缘等视觉内容,会产生大量无语义意义的区域,为之后的聚合过程带来冗余和噪声信息。...图26 CNN接netVLAD网络 还有学者提出基于对象的方法来解决以上问题。在生成图像区域时,使用基于内容的无监督对象生成方法,即通过图像颜色、纹理、边缘等视觉信息以聚类的方式来生成图像区域。

    77431
    领券