首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

sklearn应用线性回归算法

下面介绍 sklearn 中常用的算法库: ·linear_model:线性模型算法族库,包含了线性回归算法,以及 Logistic 回归算法,它们都是基于线性模型。...实现线性回归算法 下面我们是基于 sklearn 实现线性回归算法,大概可以分为三步,首先从 sklearn 库中导入线性模型中的线性回归算法,如下所示: from sklearn import linear_model...数据集的整理也是一门专业的知识,会涉及到数据的收集、清洗,也就是预处理的过程,比如均值移除、归一化等操作,如果熟悉 Pandas 的话应该了解, 因此这里不做重点讲解。...通过上述代码了解了如何使用 Python sklearn 实现线性回归,下面从总整体出发再次审视该算法:掌握线性回归算法的具体步骤。...线性回归适用于有监督学习的回归问题,首先在构建线性模型前,需要准备好待输入的数据集,数据集按照需要可划分为训练集和测试集,使用训练集中的向量 X 与向量 Y 进行模型的训练,其中向量 Y 表示对应 X

20710

机器学习sklearn线性回归

回归算法是机器学习的一个基础算法,简单的就是线性回归,还有非线性回归。本节我们讲解简单的线性回归。 线性回归就是用直线来描述两个变量之间的线性关系。...而线性回归呢跟这个类似,只不过这里有无穷多个点,我们知道一条直线一般是不能同时通过这无穷多个点的,所以呢,线性回归要求这条直线像下面的图所显示的那样能大致通过这些点就可以。...其中的数学化公式小编不做详细讲解,虽然线性回归是机器学习算法中最简单的一个,但是其数学表达也超出了很多菜鸟的理解范围。...当我们定义线性回归的损失函数是每个点到直线的距离的平方和时,这种线性回归算法称之为最小二乘法。...') # 画点 plt.show() # 显示图形窗口 于是画图窗口打开了,我们看到 接下来我们开始使用sklearn的线性回归模块 # -*- coding: utf-8 -*- import random

57910
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    sklearn系列之----线性回归

    原理 线性回归,原理很简单,就是拟合一条直线使得损失最小,损失可以有很多种,比如平方和最小等等; y是输出,x是输入,输出是输入的一个线性组合。...——>(1,) 输入:x.shape——->(m,1) #m是一个数字 大家记得不要把形式弄错啦,不然可就走不起来了; 下面是个最简单的例子: >>> from sklearn import...linear_model #导入线性模型 >>> clf = linear_model.LinearRegression() #使用线性回归 >>> clf.fit ([[0, 0], [1, 1],...: import matplotlib.pyplot as plt import numpy as np from sklearn import datasets, linear_model # 读取自带的...就是准备好数据集: regr = linear_model.LinearRegression() #使用线性回归 regr.fit(diabetes_X_train, diabetes_y_train)

    83170

    sklearn调包侠之线性回归

    线性回归原理 如图所示,这是一组二维的数据,我们先想想如何通过一条直线较好的拟合这些散点了?直白的说:尽量让拟合的直线穿过这些散点(这些点离拟合直线很近)。...y_train, y_test = train_test_split(boston.data, boston.target, test_size = 0.2, random_state=2) 数据预处理 普通的线性回归模型太简单...,容易导致欠拟合,我们可以增加特征多项式来让线性回归模型更好地拟合数据。...其重要参数有: degree:多项式特征的个数,默认为2 include_bias:默认为True,包含一个偏置列,也就是 用作线性模型中的截距项,这里选择False,因为在线性回归中,可以设置是否需要截距项...简单线性回归 from sklearn.linear_model import LinearRegression model2 = LinearRegression(normalize=True) model2

    45510

    基于sklearn的线性回归器理论代码实现

    理论 线性回归器 相比于线性分类器,线性回归器更加自然。...回归任务的label是连续的变量(不像分类任务label是离散变量),线性回归器就是直接通过权值与输入对应相乘再相加直接计算出结果$$y = w^{T}*x + b$$ 其中,w为权值,x是输入,y是输出...回归器的优化 与分类器类似,回归器也是通过梯度优化的,一般来说分类问题常用均方误差函数来标定结果的质量(即代价函数)$$L(w,b) = \sum (y - y')$$ 其中y为模型输出,y'为期望值...reshape(-1) y_test = ss_y.transform(y_test.reshape(-1,1)).reshape(-1) print(y_train.shape) (379,) 模型训练 线性回归模型...(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False) SGD回归模型 from sklearn.linear_model import

    90770

    Python机器学习教程—线性回归的实现(不调库和调用sklearn库)

    本文尝试使用两个版本的python代码,一个是不调用sklearn库版本,另一个是调用sklearn库版本的 ---- 线性回归介绍 什么是线性回归?...那么线性回归中最难的部分也就是模型训练的部分——怎么寻找到最适合的斜率和截距,也就是公式中的 线性回归实现(不调用sklearn库) 首先设定数据,是员工的工龄(年限)对应薪水(千元)的数据,使用散点图观察一下大致是否符合线性回归的情况...',linewidth=2,label='Regression Line') 结果如下图  线性回归实现(调用sklearn库) 真正在应用上,可以直接使用python的sklearn库中的函数,只需几行代码就可完成线性回归...sklearn提供的线性回归相关的API 整个线性回归的训练过程都已在model中定义好,只需将训练数据放在model.fit()中就可以自动去进行训练,而将要预测的数据放到predict()中即可。...调用库函数进行多元线性回归 上面所举的例子是一元线性回归,那么与之类比的多元线性回归,也就是考虑x1,x2,x3...这样多个特征对输出y的影响和它们之间的关系。

    1.5K40

    机器学习之线性回归(最小二乘法手写+sklearn实现)

    线性模型(Linear Model)就是试图用一个线性组合来描述一个示例的某种综合得分: 一般我们将其写成向量形式: 其中 。...那么每一个人都能用一个向量来表示: 性别性格年龄外貌财富 那么判断一个人是否是好的配偶,我们可以定义以下线性模型: 性别性格年龄外貌财富 最终,得分越高就能表明这个人更有可能是一个好的配偶。...二、线性回归 线性回归试图学习到一个线性模型以尽可能准确地预测实值输出标记。...那么我们最终的目标就是:寻找参数 和 ,使得 和 对这10000人的预测值与真实的回归目标(已经给出的 )之间的均方误差最小。...sklearn.metrics import mean_squared_error,r2_score,mean_absolute_error sklearn中有专门的线性模型包linear_model

    49420

    线性回归中的多重共线性与岭回归

    上篇文章《简单而强大的线性回归详解》(点击跳转)详细介绍了线性回归分析方程、损失方程及求解、模型评估指标等内容,其中在推导多元线性回归使用最小二乘法的求解原理时,对损失函数求导得到参数向量 的方程式...本文将详细介绍线性回归中多重共线性问题,以及一种线性回归的缩减(shrinkage)方法 ----岭回归(Ridge Regression),并对其进行了Python实现 多重共线性 多重共线性是指线性回归模型中的解释变量之间由于存在精确相关关系或高度相关关系而使模型估计失真或难以估计准确...多重共线性对回归模型的影响 回归系数的估计值方差变大,回归系数的置信度变宽,估计的精确性大幅度降低,使得估计值稳定性变差。...改进线性回归处理多重共线性 处理多重共线性方法有多种,其中最直接的方法是手动移除共线性的变量。...,了解即可,实际工作中不建议使用。

    2.1K10

    线性回归的正则化

    而我们正则化中的惩罚项,是针对\theta_1开始的所有的参数的,所以我们在上图\theta_j的更新算法的基础上加上惩罚项,就变成了: ?...这个两个式子的比较很有意思,这个式子的后半部分和没有正则化之前的那个式子是一样的,只是前半部分\theta_j的系数由1变成了(1-\alpha*(\lambda/m)),这是一个比1略小的数,取决于\...而这个红色框内的\theta的计算公式是可以让代价函数J(\theta)最小的,让这个代价函数对\theta_j求偏导然后等于0得到一个方程,求出来这个方程的解就是上图中红色框中的这样的公式了。...实际上,当我们的训练样本的数量m小于特征的数量n时,括弧里面的东西它就是不可逆的(奇异矩阵)。...小结 本小节,我们学习了引入正则化后,梯度下降、正规方程两种线性回归求解方法发生了什么样的变化。 我们还知道了,正则化在防止过拟合的同时,还可以顺便解决正规方程中不可逆的问题。

    51820

    【TensorFlow】TensorFlow 的线性回归

    前面 有篇博文 讲了讲Ubuntu环境下安装TensorFlow,今天来说一说在TensorFlow中如何进行线性回归。...训练部分数据 ---- 模型 本次使用的是线性回归模型 y=Wx+by=Wx+b y=Wx+b 其中WWW为权重,bbb为偏置。...即使我减小学习率也是杯水车薪,后来试用了这个Adam(Adaptive Moment Estimation)算法,结果没有那个问题了,其实还有其他的算法,我还没有来得及一个一个试,如果想了解各种梯度下降算法...TensorFlow 的定制性比较强,更为底层),我用 sklearn 实现了一次,效果很好,基本就是傻瓜式操作,效果如图, ?...可以看到两种方法得出的结果还是差不多的(当然TF更为繁琐些)。另外在耗时上,sklearn 也要明显快于 TF, sklearn 几乎是秒出,TF 每次迭代大概需要 11 秒。

    71820

    pytorch中的线性回归

    pytorch中的线性回归 简介: 线性回归是一种基本的机器学习模型,用于建立输入特征与连续输出之间的关系。...线性回归原理 在线性回归中,我们假设输入特征 X 与输出 Y 之间的关系可以表示为: Y = WX + b 其中, W 是特征的权重(系数), b 是偏置项,用于调整输出值。...通常使用最小化均方误差(Mean Squared Error,MSE)来衡量预测值与真实值之间的差距。 实现线性回归 在 PyTorch 中,我们可以利用自动求导功能和优化器来实现线性回归模型。...下面是一个简单的线性回归示例代码: 我们的目的是:预测输入特征X与对应的真实标签Y之间的关系。...,线性回归模型的方程为: Y = 1.9862X + 0.0405 其中: Y 是预测的因变量值, - X 是自变量的值。

    4100

    线性回归背后的数学

    本文是YouTube上视频How to Do Linear Regression the Right Way笔记 假设我们有一堆数据,并且他们是线性相关的,那我们怎么找出最合适的那条直线呢?...可以通过每个点到直线的距离来定义整个合适,如图: ? 在上面的过程中,直线y=mx+b中m和b不管变化,从而找到最合适的直线,这个判断的依据就是: ?...上面公式的含义是:假设点是(x,y),那相同x的直线上的点就是:(x,mx+b),而这两者之间的距离就是(y-(mx+b)),为了防止出现负数,因此我们就计算了平方,有了这个衡量的标准后,我们就可以画出上面公式的一个图了...此处画出来是一个立体图,我们要找的一个最佳的直线,对应到图中其实就是一个最低点,更形象的例子是: ?...图中的函数f是一个表面,如果我们固定住y,则是一个曲线,如图中绿色的线,此时我们在计算点(a,b,f(a,b))在绿色线上的斜率,就可以得到沿着x方向的斜率了,同样的我们固定x,就可以得到y方向的斜率,

    53420
    领券