首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【数据分析】一位电商数据分析师的经验总结

    就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员流失;利用会员的购买数据,挖掘会员的潜在需求,提供销售,扩大影响力等等。   最开始进公司的时候是在运营部,主要是负责运营报表的数据,当时的系统还很差,提取数据很困难,做报表也很难,都是东拼西凑一些数据,然后做成PPT,记得当时主要的数据就是销

    06

    维度模型数据仓库(七) —— 按需装载

    (五)进阶技术         2. 按需装载         前面已经做了“初始装载”和“定期装载”。还有一种需要熟悉的装载类型,按需装载。所谓“按需装载”指的是,在正常调度之外,当源数据有效时或者数据仓库需要时进行装载。例如,促销销售源数据只有在促销期内有效,而在其它时间是无效的。         在“准备数据仓库模拟环境”中讨论的“生成日期维度数据”可以看做是一种按需装载。数据仓库预先装载了日期,当日期用完时,需要再次运行预装载。         本篇的主题是按需装载,首先修改数据库模式,然后在dw数据库上执行按需装载。使用促销期场景进行说明。定期装载不适合促销期场景,因为促销期数据并不是按调度装载。下面是需要装载的促销期内容,存储在名为一个promo_schedule.csv的CSV平面文件中。 PROMOTION CODE,PROMOTION NAME,START DATE,LAST DATE SO,Special Offer,2015-04-01,2015-04-10 DP,Disk Promotion,2015-05-05,2015-05-20 MS,Month Special,2015-06-01,2015-06-30 MS,Monitor Promotion,2015-07-10,2015-07-15 BS,Back to School,2015-08-10,2015-08-30         注意源数据提供了促销周期,而不是单个的促销日期。示例假设只需要装载今后新的促销数据,而在数据仓库中不需要促销期的历史数据。         修改数据库模式         图(五)- 2-1 显示了修改后的模式,date_dim表增加了promo_ind列,用来标识该日期是否为促销日期。使用清单(五)-2-1里的SQL脚本修改数据库模式。脚本中还建立了一个促销过渡表,用来装载促销期CSV文件的内容。

    01

    技术 | 数据仓库分层存储技术揭秘

    据IDC发布的《数据时代2025》报告显示,全球每年产生的数据将从2018年的33ZB增长到2025年的175ZB,平均每天约产生491EB数据。随着数据量的不断增长,数据存储成本成为企业IT预算的重要组成部分。例如1PB数据存储一年,全部放在高性能存储介质和全部放在低成本存储介质两者成本差距在一个量级以上。由于关键业务需高性能访问,因此不能简单的把所有数据存放在低速设备,企业需根据数据的访问频度,使用不同种类的存储介质获得最小化成本和最大化效率。因此,把数据存储在不同层级,并能够自动在层级间迁移数据的分层存储技术成为企业海量数据存储的首选。

    02

    无细分,毋宁死:电子商务数据分析三年工作总结

    08年毕业,不知不觉的混进了电子商务行业,又不知不觉的做了三年数据分析,恰好又赶上了互联网电子商务行业发展最快的几年,也算是不错吧,毕竟感觉前途还是很光明的。三年来,可以说跟很多同事学到了不少东西,需要感谢的人很多,他们无私的教给了我很多东西。 就数据分析职业来说,个人感觉这对互联网公司来说是非常重要的,也是确实能够带来实际效果的东西。比如说利用数据分析做会员的细分以进行精准化营销;利用数据分析来发现现有的不足,以作改进,让顾客有更好的购物体验;利用CRM系统来管理会员的生命周期,提高会员的忠诚度,避免会员

    07

    基于Hadoop生态圈的数据仓库实践 —— 进阶技术(二)

    二、按需装载 前面已经做了“初始装载”和“定期装载”。还有一种需要熟悉的装载类型,按需装载。所谓“按需装载”指的是,在正常调度之外,当源数据有效或者数据仓库需要时进行装载。例如,促销销售源数据只有在促销期内有效,而在其它时间是无效的,而对促销期数据就要进行按需装载。 在“建立数据仓库示例模型”中讨论的日期维度数据生成可以看做是一种按需装载。数据仓库预先装载了日期,当日期用完时,需要再次运行预装载。 本节的主题是按需装载,首先修改数据库模式,然后在DW数据库上执行按需装载,使用促销期场景进行说明。定期装载不适合促销期场景,因为促销期数据并不是按调度定期装载。下面是需要装载的促销期内容,存储在source.promo_schedule表中。

    01

    【推荐阅读】数据湖—引导中国制造2025变革的数字宠儿

    [导读]无论是为促销产品还是作为战略目标,大数据已然成为很多公司和机构过度使用的术语。笔者认为,数据基本就是两类,一类是人类轨迹产生的数据,另一类机器自动产生的数据。这两类数据构成了我们今天的大数据多结构化数据源。大数据不仅要关注实际数据量的多少, 而最重要的是关注在大数据的处理方法,让数据产生巨大的创新价值。这也就是为何以谷歌为代表的技术创新类的公司会在未来成为全球市值最高的公司的核心原因之一。 本文整理自张礼立博士作品、中国工业评论 实现工业4.0或中国制造2025的前提之一是构建智能工厂, 其核心要

    06

    【技术博客】数据驱动精准化营销在大众点评的实践

    精准化营销一直以来都是互联网营销业务在细分市场下快速获取用户和提高转化的利器。在移动互联网爆发的今天,数据量呈指数增长,如何在移动和大数据场景下用数据驱动进行精准营销,从而提高营销效能,成为营销业务部门的主要挑战之一,同时也是大数据应用的一个重要研究方向。本文通过数据体系架构和技术实现案例,分享美团大众点评数据应用团队在这个方向上的一些尝试和实践经验。 总体框架 在介绍数据体系和框架前,为了方便大家理解,先简单阐述一下O2O营销的基本组成:O2O营销是由营销发生的渠道(站内,站外)与营销的主题业务(流量,交

    09

    探索物流预测珠峰:苏宁智能运输路线技术设计

    作者 | 俞恺、李盛强 责编 | 何永灿 来自物流的挑战 近年来,随着电商增速的放缓,市场对电商企业提供的差异化服务提出更高要求,而物流则首当其冲,一方面需要满足用户更高的服务质量要求,而另一方面电商物流要从成本中心变成利润中心,满足企业运作的效益需求。面对这个现况,苏宁物流研发运用大数据技术,分析历史数据,预测未来趋势,运用最优化算法来合理调度资源,安排计划,以系统性的提升整体物流运营效率,降低运营成本,从而提升用户体验。 电商物流中决定用户体验的一个核心指标是时效,而决定时效的关键因素就是运输班车的衔接

    03
    领券