大数据时代中,数据仓库解决了商业智能分析过程中的数据管理问题,但是存在烟囱式、冗余高的弊端
存算分离,现在已经成为云原生数据库的标配, 开始大规模流行。存算分离后, 进一步使计算单元和存储单元解耦,每个单元可以实现单独的动态扩缩容,并且可以通过冗余配置,实现对单点故障的容忍度, 可以说是近年来数据库市场上的一大进步。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。
本项目案例由帆软投递并参与“数据猿年度金猿策划活动——《2022大数据产业年度创新服务企业》榜单/奖项”评选。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。 12月20日,腾讯2020 Techo Park开发者大会大数据分论坛在北京召开。腾讯数据平台部数据中心技术总监于洋、腾讯云大数据首席产品架构师高廉墀以及腾讯云大数据团队 Ozone 项目技术负责人陈怡等嘉宾出席大会,并探讨了数据仓库的多元技术,聚焦云端数据仓库的热潮,展现腾讯数据仓库技术架构演进与未来发展。 云原生数据仓库成为风口,助力解决企业数据仓库转型升级 从企业数字化转型看,
导读:要建设数据中台,我们首先需要明确什么是数据中台,以及数据中台能为企业带来什么价值。
刚刚获悉,在全球研究机构Forrester最新发布了2023年第二季度《The Forrester Wave™: Cloud Data Warehouses》报告,吸引众多国际顶尖云数据仓库厂商参与其中,腾讯云以全栈云原生数据仓库解决方案成功入选 “竞争者”阵营,成为国内唯二入选的云厂商。
1.腾讯云BI:提供从数据接入到模型分析、数据可视化呈现全流程 BI 能力,帮助经营者快速获取决策数据依据。
腾讯云数据仓库 Doris 助力荔枝微课构建了规范的、计算统一的实时数仓平台。目前腾讯云数据仓库 Doris 已经支撑了荔枝微课内部 90% 以上的业务场景,整体可达到毫秒级的查询响应,数据时效性完成 T+1 到分钟级的提升,开发效率更是实现了 50% 的增长,满足了各业务场景需求、实现降本提效,深得十方融海各数据部门高度认可。
云数据仓库套件 Sparkling(Tencent Sparkling Data Warehouse Suite)基于业界领先的 Apache Spark 框架为您提供一套全托管、简单易用的、高性能的 PB 级云端数据仓库解决方案。支持创建数千节点的企业级云端分布式数据仓库,并高效的弹性扩缩容,支持数据可视化,通过智能分析帮助企业挖掘数据的价值。
Snova为您提供简单、快速、经济高效的PB级云端数据仓库解决方案。借助于Snova,您可以在数分钟内创建拥有数百节点的企业级云端数据仓库,并高效的完成日常维护工作;也可以使用丰富的Postgre开源生态工具,实现对Snova中海量数据的即时查询分析、ETL处理及可视化探索;还可以借助其云端数据无缝集成特性,轻松分析位于COS、CDB、ES等数据引擎上的PB级数据。
沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!后来经过大量实际调查和分析,发现在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒,这是因为美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
引言 人工智能、大数据与云计算三者有着密不可分的联系。人工智能从1956年开始发展,在大数据技术出现之前已经发展了数十年,几起几落,但当遇到了大数据与分布式技术的发展,解决了计算力和训练数据量的问题,开始产生巨大的生产价值;同时,大数据技术通过将传统机器学习算法分布式实现,向人工智能领域延伸;此外,随着数据不断汇聚在一个平台,企业大数据基础平台服务各个部门以及分支机构的需求越来越迫切。通过容器技术,在容器云平台上构建大数据与人工智能基础公共能力,结合多租户技术赋能业务部门的方式将人工智能、大数据与云计算进行
2021年8月20日,贵州农信行社数据仓库软硬件采购项目单一来源采购公示发布。 拟采购商品信息:行社数据仓库软硬件(GaussDB数据库及大数据软件License部分) 采用单一来源采购方式的原因及相关说明:大数据平台由贵安迁移至观山湖数据中心时,使用了华为泰山服务器和大数据产品,用于搭建观山湖数据中心大数据平台。现由于数据量增长大数据平台需进行扩容,鉴于后续应用扩展及行社数仓项目建设,为保持服务延续性及前后软硬件产品的一致性,同时考虑到系统兼容性,便于投产后运维,拟继续采购华为系列产品用于扩容大数据平台
摘 要:通过对数据处理阶段性发展的解析,分析大数据、人工智能技术的发展趋势。结合实际生产需求,验证了基于容器云架构的新一代大数据与人工智能平台在数据分析、处理、挖掘等方面的强大优势。
这几天把跨年搞的和人生分水岭似的🤪 2023年的你有什么不一样了吗? 是不是还和去年一样的造型? 新姿(知)势(识),学起来 腾讯云开发者社区带着干货来了 腾讯云×尚硅谷大数据研究院强强联手 重磅推出新年第一弹 腾讯云EMR数仓教程发布 腾讯云开发者社区“公开课”直达: https://mc.tencent.com/JLIcWlY0 扫码加入“腾讯云大数据EMR交流群” 免费获取全套教程 群内提供腾讯云官方大数据团队导师全程指导及技术交流 本教程由腾讯云官方与尚硅谷大数据研究院联合推出,分为实时
导语 | 分析型数据仓库经历了共享存储、无共享MPP、SQL-on-Hadoop几代架构的演进,随着云计算的普及,传统的数据仓库架构在资源弹性,成本等方面已经很难适应云原生的要求。本文由偶数科技 CEO,腾讯云TVP 常雷在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《新一代云原生数据仓库的应用》演讲分享整理而成,为大家详细剖析新一代云原生数据仓库的架构、原理和实现技术,以及如何充分应用云原生数据仓库的特点来实现云上大数据应用。 点击可观看精彩演讲视频
“智能座舱、网联、OTA技术将助力车厂形成长期竞争力,实现未来数字化服务的营收。”近日,在标普全球(S&P Global)举行的2022汽车解决方案网络研讨会上,标普全球汽车预测,到2028年,车联网将成为新车标配。整车联网率与OTA搭载率的不断上升,为整车智能化的提升奠定了基础。在此背景下,探索车内个性化服务的商业空间,拓展智能服务创新模式将成为未来车企竞争的关键。
2021 年初,在 InfoQ 全年技术趋势展望中,数据湖与数据仓库的融合,成为大数据领域的趋势重点。直至年末,关于二者的讨论依然热烈,行业内的主要分歧点在于数据湖、数据仓库对存储系统访问、权限管理等方面的把控;行业内的主要共识点则是二者结合必能降低大数据分析的成本,提高易用性。
腾讯云升级发布新一代云数仓产品 CDW ClickHouse,万亿规模数据分析毫秒级响应 6月28日,腾讯云重磅发布了全新升级的全托管数仓产品CDW-ClickHouse,该版本首次填补了原生ClickHouse后续扩容的技术空白,相较Hadoop生态体系有高达10倍乃至100倍的性能提升,支持万亿规模数据毫秒级响应,可为用户提供在海量数据实时分析场景下的极速体验。 腾讯云 CDW ClickHouse 升级发布 现阶段,千行百业都在积极利用大数据能力进行数字化升级,这也对大数据技术提出了更高要求。但目
数据库行业正走向分水岭。 过去几年,全球数据库行业发展迅猛。2020年,Gartner首次把数据库领域的魔力象限重新定义为Cloud DBMS,把云数据库作为唯一的评价方向;2021年,Gartner魔力象限又发生了两个关键的变化: 1、Snowflake和Databricks两个云端数据仓库进入领导者象限; 2、放开了魔力象限的收入门槛限制,SingleStore、Exasol、MariaDB、Couchbase等数据库新势力首次进入榜单。 某种程度上,这种变化的背后,暗示着全球数据库已经进入发展的黄金时
在2023腾讯全球数字生态大会大数据专场上,腾讯云大数据正式发布云数据仓库全新品牌TCHouse,全面构建性能与易用性兼具的企业级云数仓体系。同时,还针对大模型场景,率先在国内发布具备云端AI增强与向量检索能力的ES 全新版本,以及代表下一代Lakehouse湖仓架构的数据湖计算产品DLC,免运维、轻量化、低门槛等新特性,助力客户轻松构筑面向AIGC的企业大数据基座。
1991年,比尔·恩门(Bill Inmon)出版了他的第一本关于数据仓库的书《Building the Data Warehouse》,标志着数据仓库概念的确立。
导语 | 微信作为一款国民级应用,已经覆盖了社交、支付、出行等人们生活的方方面面。海量多样化的业务形态,对数据分析提出了新的挑战。为了满足业务数据分析的需求,微信WeOLAP团队联手腾讯云,共建千台规模、数据PB级、批流一体的ClickHouse数据仓库,实现了10倍以上的性能提升。本文将由浅入深,为大家揭晓微信在ClickHouse实时数仓实践中积累的经验及方法。 (作者:微信WeOLAP团队&腾讯云数据仓库Clickhouse团队) 一、微信遇到的挑战 一般来说,微信主要的数据分析场景包含以下几
12月19日至20日,由腾讯主办的 2020 Techo Park 开发者大会将于北京召开。作为一个专注于前沿技术研讨的非商业大会,Techo Park 开发者大会致力于为全球开发者搭建一个开放、中立、活跃的技术交流平台。通过最纯粹的技术分享、最干货的应用实践,和最前沿的技术思考为中国以及全球云计算爱好者、从业者、开发者提供最具参考价值的创新分享。 在本次 Techo 大会,您可以体验更多创意玩法:不止有云计算各领域技术嘉年华论坛、主题圆桌派,还有22小时黑客松大赛、“奥秘之城”展览等创新活动…沉浸式感受
在知乎看见了一个数据分析师的真实经历,忍不住唏嘘。 图片截自知乎 原文太长,简单概括一下:楼主是香港城市大学的硕士,在银行工作四年后想跳槽,但因为能力不符合公司的招聘要求,总是一面就挂了。 有人说行业人才饱和,竞争激烈;也有人说楼主简历写得笼统,不够亮眼;但最主要的原因其实是:没有建立起自己的技术护城河。 有很多公司的数据分析岗,入职之后每天都在取数、取数、取数,成了货真价实的crud/sql boy。这样的岗位即使工作十年,能带来的成长也极其有限。 如果自己不能精通一套有门槛的硬技术,不能和新人拉开差
关于作者:小姬,某知名互联网公司产品专家,对数据采集、生产、加工有所了解,期望多和大家交流数据知识,以数据作为提出好问题的基础,发觉商业价值。
作者:微信WeOLAP团队&腾讯云数据仓库 Clickhouse 团队 微信作为一款国民级应用,已经覆盖了社交、支付、出行等人们生活的方方面面。海量多样化的业务形态,对数据分析提出了新的挑战。为了满足业务数据分析的需求,微信 WeOLAP 团队联手腾讯云,共建千台规模、数据 PB 级、批流一体的 ClickHouse 数据仓库,实现了 10 倍以上的性能提升。下文将由浅入深,为大家揭晓微信在 ClickHouse 实时数仓实践中积累的经验及方法。 一、微信遇到的挑战 一般来说,微信主要的数据分析场景包含
微信作为一款国民级应用,已经覆盖了社交、支付、出行等人们生活的方方面面。海量多样化的业务形态,对数据分析提出了新的挑战。为了满足业务数据分析的需求,微信 WeOLAP 团队联手腾讯云,共建千台规模、数据 PB 级、批流一体的 ClickHouse 数据仓库,实现了 10 倍以上的性能提升。下文将由浅入深,为大家揭晓微信在 ClickHouse 实时数仓实践中积累的经验及方法。
一时间,似乎所有与数据库有关的厂商都在提“湖仓一体”,仅从百度新闻搜索查询到权重较高的媒体文章就至少有150多篇。随着企业数字化转型进入深水区,越来越多的企业视“湖仓一体”为数字变革的重要契机,如今湖仓一体受到前所未有的关注。
作者:微信WeOLAP团队&腾讯云数据仓库 Clickhouse 团队 微信作为一款国民级应用,已经覆盖了社交、支付、出行等人们生活的方方面面。海量多样化的业务形态,对数据分析提出了新的挑战。为了满足业务数据分析的需求,微信 WeOLAP 团队联手腾讯云,共建千台规模、数据 PB 级、批流一体的 ClickHouse 数据仓库,实现了 10 倍以上的性能提升。下文将由浅入深,为大家揭晓微信在 ClickHouse 实时数仓实践中积累的经验及方法。 一、微信遇到的挑战 一般来说,微信主要的数据分析场景
为适应数据应用需求,大数据平台架构持续演进,历经数据仓库、数据湖两个阶段。2020年,湖仓一体概念提出,湖仓一体架构因能实现数据资产统一管理、降低数据冗余、降低大数据平台架构运维复杂性,将成为大数据平台的主流架构。
说到数据库相信很多人都知道,对于很多的公司来说,公司的品种越多,成立的时间越久,对于储存数据的电脑就会要求越高,而且后期还有可能会出现数据丢失的情况。为了防止此种情况的发生,并有效地储存数据资料,就有了云数据仓库。那么什么是云数据仓库?云数据仓库世界排名的厂商有哪些?
本文是“2021 InfoQ 年度技术盘点与展望”系列文章之一,由 InfoQ 编辑部制作呈现,重点聚焦大数据领域在 2021 年的重要进展、动态,希望能帮助你准确把握 2021 年大数据领域的核心发展脉络,在行业内始终保持足够的技术敏锐度。 “InfoQ 年度技术盘点与展望”是 InfoQ 全年最重要的内容选题之一,将涵盖架构、AI、大数据、大前端、云计算、数据库、中间件、操作系统、开源、编程语言十大领域,后续将聚合延展成专题、迷你书、直播周、合集页面,在 InfoQ 媒体矩阵陆续放出,欢迎大家持续关注。
问题导读 1.实时数据仓库有哪些特点? 2.公司构建实时数据仓库有哪些好处? 3.如何构建实时数据仓库? 4.实时数据仓库本文解析了哪些架构? 越来越多的实时数据需求,需要更多的实时数据来做业务决策,例如需要依据销售情况做一个资源位的调整;同时有些活动也需要实时数据来增强与用户的互动。如果数据有实时和离线两种方案,优先考虑实时的,如果实时实现不了再考虑离线的方式。 实时数据仓库,已经被很多公司所接受,而且接触很多About云社区会员,都在筹备搭建实时数据仓库。 1.那么实时数据仓库有哪些特点:
随着互联网的快速发展,云计算也成了很多企业的基础配置。特别是一些大企业对于云计算的需求量是很大的,同时对于云数据库的要求也比较高,特别是在安全性与可靠性方面。那么云数据仓库租用价格是多少?云数据仓库的优势有哪些
阅读建议:本篇站在数据分析师角度,和大家谈谈工作中涉及到的数仓知识点,内容不难理解,对于初学者来说比较友好。
ClickHouse 最近发表了一篇精彩的文章,描述了 Snowflake 和 Redshift 等云数据仓库已经不能满足新的客户需求,并且指出许多企业已经发现他们的云数据仓库成本是不可持续的。
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
数字化时代,数据使用场景呈现多元化趋势,数据规模也随之爆发式增长。海量异构数据的爆发式增长,对数据库的存储和计算能力提出了更高的要求。分析型数据库因其在处理海量实时数据时具有优秀的存算和管理能力,近年来赢得了市场的青睐。
相比于普通的自己做的数据库而言,云数据仓库的储存空间更大,安全性更高。而且随着市场经济的发展,对于云数据仓库的需求也更大。那么云数据仓库市场规模有多大?云数据仓库有什么优势?
顶级云计算数据仓库展示了近年来云计算数据仓库市场发展的特性,因为很多企业更多地采用云计算,并减少了自己的物理数据中心足迹。
我们经常在淘宝上购物, 作为淘宝方, 他们肯定想知道他的使用用户是什么样的, 是什么样的年龄性别, 城市, 收入, 他的购物品牌偏好, 购物类型, 平时的活跃程度是什么样的, 这样的一个用户描述就是用户画像分析。
数据,对一个企业的重要性不言而喻。如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色。构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则是可能使企业陷入无休止的问题之后,并在未来的企业竞争中处于劣势。随着越来越多的基础设施往云端迁移,那么数据仓库是否也需要上云?上云后能解决常见的性能、成本、易用性、弹性等诸多问题嘛?如果考虑上云,都需要注意哪些方面?目前主流云厂商产品又有何特点呢?面对上述问题,本文尝试给出一些答案,供各位参考。本文部分内容参考了MIT大学教授David J.DeWitt的演讲材料。
在数据大爆炸时代,随着企业的业务数据体量的不断发展,半结构化以及无结构化数据越来越多,传统的数据仓库面临重大挑战。通过以Hadoop, Spark为代表的大数据技术来构建新型数据仓库,已经成为越来越多的企业应对数据挑战的方式。
数据,对一个企业的重要性不言而喻,如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色,构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则可能使企业陷入无休止的问题之中,并在未来的企业竞争中处于劣势。
大数据文摘翻译:于丽君/ 校对:瑾儿小浣熊(转载请保留) 摘要: 谷歌近期发表了一篇关于最新大数据系统的论文,是关于Mesa这一全球部署的数据仓库,它可以在数分钟内提取上百万行,甚至可以在一个数据中心发生故障时依然运作。 谷歌正在为其一项令人兴奋的产品揭开面纱,它可能成为数据库工程史上的又一个壮举,这就是一个名为Mesa的数据仓库系统,它可以处理几乎实时的数据,并且即使一整个数据中心不幸脱机也可以发挥它的性能。谷歌工程师们正在为下个月将在中国举行的盛大的数据库会议准备展示其关于Mesa的论文。 该篇论文的
随着大数据技术的不断更新和迭代,数据管理工具得到了飞速的发展,相关概念如雨后春笋一般应运而生,如从最初决策支持系统(DSS)到商业智能(BI)、数据仓库、数据湖、数据中台等,这些概念特别容易混淆,本文对这些名词术语及内涵进行系统的解析,便于读者对数据平台相关的概念有全面的认识。
领取专属 10元无门槛券
手把手带您无忧上云