云数据仓库架构选择是一个重要的决策,因为它直接影响到数据存储、查询性能、成本和可扩展性等方面。在选择云数据仓库架构时,需要考虑以下几个关键因素:
基于以上因素,可以选择以下几种常见的云数据仓库架构:
推荐的腾讯云相关产品和产品介绍链接地址:
希望以上答案能够帮助您更好地了解云数据仓库架构选择。
是时候将数据分析迁移到云端了——您选择数据仓库还是数据湖解决方案?了解这两种方法的优缺点。 数据分析平台正在转向云环境,例如亚马逊网络服务、微软 Azure 和谷歌云。 云环境提供了多种好处,例如可扩展性、可用性和可靠性。此外,云提供商有大量的原生组件可供构建。还有多种第三方工具可供选择,其中一些是专门为云设计的,可通过云市场获得。 工具自然倾向于强调自己在分析集成中的作用。当您尝试选择最佳工具集时,这通常会令人困惑。在这篇文章中,我们将详细介绍许多工具的优缺点。 这是一个由三部分组成的系列文章的第一篇,
原文地址:https://dzone.com/articles/criteria-for-selecting-a-data-warehouse-platform
以数据洞察力为导向的企业 每年增长 30% 以上。数据有助于公司排除决策错误。团队可以利用数据结果来决定构建哪些产品、增加哪些特性以及追求哪些增长。
在当今数据驱动的商业世界中,高效、灵活的数据管理成为企业成功的关键。数据仓库和数据湖,作为数据存储和处理的两种主流技术,分别扮演着独特而重要的角色。
ClickHouse 最近发表了一篇精彩的文章,描述了 Snowflake 和 Redshift 等云数据仓库已经不能满足新的客户需求,并且指出许多企业已经发现他们的云数据仓库成本是不可持续的。
顶级云计算数据仓库展示了近年来云计算数据仓库市场发展的特性,因为很多企业更多地采用云计算,并减少了自己的物理数据中心足迹。
作为一种新兴架构,湖仓一体在扩展性、事务性以及灵活度上都体现出了独有的优势,也正因如此,无论在技术圈还是资本圈,湖仓一体都受到了前所未有的关注度。
Snowflake 是在 Cloud 之上开发的基于云的数据仓库平台,截至目前,亚马逊网络服务 (AWS)、微软 Azure 和谷歌云等流行的云提供商都在支持 Snowflake。
导语 | 分析型数据仓库经历了共享存储、无共享MPP、SQL-on-Hadoop几代架构的演进,随着云计算的普及,传统的数据仓库架构在资源弹性,成本等方面已经很难适应云原生的要求。本文由偶数科技 CEO,腾讯云TVP 常雷在 Techo TVP开发者峰会「数据的冰与火之歌——从在线数据库技术,到海量数据分析技术」 的《新一代云原生数据仓库的应用》演讲分享整理而成,为大家详细剖析新一代云原生数据仓库的架构、原理和实现技术,以及如何充分应用云原生数据仓库的特点来实现云上大数据应用。 点击可观看精彩演讲视频
企业数据仓库平台的所有者面临许多常见挑战。在本文中,我们着眼于七个挑战,探讨对平台和业务所有者的影响,并强调现代数据仓库如何应对这些挑战。
数据仓库、数据湖和数据流的概念和架构数据库可以为解决业务问题提供补充。本文介绍了如何使用原生云技术构建现代数据堆栈。
预计到2025年,全球数据量将增长至180ZB,企业必须处理两个主要问题——在哪里存储数据以及如何使用数据。数据仓库自20世纪80年代以来就已经存在,并且其功能不断扩展,可以帮助应对这两个挑战。然而,根据独立市场研究公司VansonBourne的研究,无论技术成熟度如何,而且数据仓库通常由专家开发,失败项目的比例仍然高居不下。
大数据时代中,数据仓库解决了商业智能分析过程中的数据管理问题,但是存在烟囱式、冗余高的弊端
机器学习 (ML) 等人工智能 (AI) 技术改变了我们处理和处理数据的方式。然而,人工智能的采用并不简单。大多数公司仅将 AI 用于其数据的最小部分,因为扩展 AI 具有挑战性。通常,企业无法利用 预测分析 因为他们没有完全成熟的数据策略。
来源:五分钟学大数据 本文约10000+字,建议阅读10+分钟 本文将从历史的角度对数据湖和数据仓库的来龙去脉进行深入剖析。 随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?二者是水火不容还是其实可以和谐共存,甚至互为补充? 本文作者来自阿里巴巴计算平台部门,深度参与阿里巴巴大数据/数
腾讯云数据仓库 Doris 助力荔枝微课构建了规范的、计算统一的实时数仓平台。目前腾讯云数据仓库 Doris 已经支撑了荔枝微课内部 90% 以上的业务场景,整体可达到毫秒级的查询响应,数据时效性完成 T+1 到分钟级的提升,开发效率更是实现了 50% 的增长,满足了各业务场景需求、实现降本提效,深得十方融海各数据部门高度认可。
沃尔玛拥有世界上最大的数据仓库系统,它利用数据挖掘方法对交易数据进行分析后发现"跟尿布一起购买最多的商品竟是啤酒!后来经过大量实际调查和分析,发现在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒,这是因为美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。
在这一过程中,作为数字化底座的云,已经不仅仅局限于基础设施角色,更是企业持续创新和精益运营的关键支撑。
导读:随着近几年数据湖概念的兴起,业界对于数据仓库和数据湖的对比甚至争论就一直不断。有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。
Onehouse 创始人/首席执行官 Vinoth Chandar 于 2022 年 3 月在奥斯汀数据委员会[1]发表了这一重要演讲。奥斯汀数据委员会是“世界上最大的独立全栈数据会议”,这是一个由社区驱动的活动,包括数据科学、数据工程、分析、机器学习 (ML)、人工智能 (AI) 等。
这篇博文中提出的建议并不新鲜。事实上许多组织已经投入了数年时间和昂贵的数据工程团队的工作,以慢慢构建这种架构的某个版本。我知道这一点,因为我以前在Uber和LinkedIn做过这样的工程师。我还与数百个组织合作,在开源社区中构建它并朝着类似的目标迈进。
在企业数字化转型的当下,数据仓库的云端构建成为主流趋势,Gartner 预测,到2023年全球3/4的数据库都会跑在云上。 12月20日,腾讯2020 Techo Park开发者大会大数据分论坛在北京召开。腾讯数据平台部数据中心技术总监于洋、腾讯云大数据首席产品架构师高廉墀以及腾讯云大数据团队 Ozone 项目技术负责人陈怡等嘉宾出席大会,并探讨了数据仓库的多元技术,聚焦云端数据仓库的热潮,展现腾讯数据仓库技术架构演进与未来发展。 云原生数据仓库成为风口,助力解决企业数据仓库转型升级 从企业数字化转型看,
刚刚获悉,在全球研究机构Forrester最新发布了2023年第二季度《The Forrester Wave™: Cloud Data Warehouses》报告,吸引众多国际顶尖云数据仓库厂商参与其中,腾讯云以全栈云原生数据仓库解决方案成功入选 “竞争者”阵营,成为国内唯二入选的云厂商。
实现内部部署设施到多云之间的数据迁移将加快创新速度,将业务人员从运营工作中解放出来,并在混合云和多云部署环境之间构建一座桥梁。
10年前,Pentaho公司创始人兼CTO詹姆斯·迪克逊(James Dixon)在他的博客中第一次提出“数据湖”(Data Lake)的概念;10年后的今天,在业界“数据中台”大火的时代背景下,再来讨论“数据湖”,别有一番风味。
确实,如果从一个初学者来说这些技术可能大家听起来会很容易觉得混淆,他们到底是什么样的一些关系?我为大家去简单的梳理一下。
在当今信息时代,数据被认为是最宝贵的资源之一。企业越来越依赖数据来推动业务决策、改进产品和服务,以及实现创新。因此,构建高效的数据架构变得至关重要。本文将深入探讨如何构建高效的数据湖(Data Lake)并将其与传统数据仓库融合,以满足大规模数据处理的需求。
作为数据仓库实施的核心组件,OLAP 为商业智能 (BI) 和决策支持应用程序提供快速、灵活的多维数据分析。 什么是 OLAP? OLAP(用于在线分析处理)是一种软件,用于对来自数据仓库、数据集市或其他一些统一的集中式数据存储的大量数据进行高速多维分析。 大多数业务数据都有多个维度——数据被分解为多个类别以进行展示、跟踪或分析。例如,销售数据可能具有与位置(地区、国家、州/省、商店)、时间(年、月、周、日)、产品(服装、男/女/童、品牌、类型)相关的多个维度,和更多。 但在数据仓库中,数据集存储在表中,
在数据大爆炸时代,随着企业的业务数据体量的不断发展,半结构化以及无结构化数据越来越多,传统的数据仓库面临重大挑战。通过以Hadoop, Spark为代表的大数据技术来构建新型数据仓库,已经成为越来越多的企业应对数据挑战的方式。
这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂商也纷纷推出自己的数据湖、云数据仓库、湖仓一体产品。
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。
数据,对一个企业的重要性不言而喻。如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色。构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则是可能使企业陷入无休止的问题之后,并在未来的企业竞争中处于劣势。随着越来越多的基础设施往云端迁移,那么数据仓库是否也需要上云?上云后能解决常见的性能、成本、易用性、弹性等诸多问题嘛?如果考虑上云,都需要注意哪些方面?目前主流云厂商产品又有何特点呢?面对上述问题,本文尝试给出一些答案,供各位参考。本文部分内容参考了MIT大学教授David J.DeWitt的演讲材料。
第1章和第2章介绍了数据驱动组织的概念,并在大数据计划的背景下定义了数据操作的概念。现在,是时候退一步,探索一些其他基本但重要的概念了。在这一点上,我们最重要的任务之一是清楚地描述数据仓库和数据湖之间的区别。
当您正在集成所有数据以存储在数据仓库中以进行最终用户分析时,必须映射数据。数据映射在一个信息源和另一个信息源之间进行转换,基本上将数据源字段与数据仓库中的目标字段进行匹配。
导语 | 本文推选自腾讯云开发者社区-【技思广益 · 腾讯技术人原创集】专栏。该专栏是腾讯云开发者社区为腾讯技术人与广泛开发者打造的分享交流窗口。栏目邀约腾讯技术人分享原创的技术积淀,与广泛开发者互启迪共成长。本文作者是腾讯后台开发工程师叶强盛。 引言 这十多年大数据技术蓬勃发展,从市场的表现来看基于大数据的数据存储和计算是非常有价值的,其中以云数据仓库为主打业务的公司Snowflake市值最高(截止当前449亿美元),另一家以湖仓一体为方向公司Databricks估值或达380亿美元;各大伺机而动的云厂
问题导读 1.实时数据仓库有哪些特点? 2.公司构建实时数据仓库有哪些好处? 3.如何构建实时数据仓库? 4.实时数据仓库本文解析了哪些架构? 越来越多的实时数据需求,需要更多的实时数据来做业务决策,例如需要依据销售情况做一个资源位的调整;同时有些活动也需要实时数据来增强与用户的互动。如果数据有实时和离线两种方案,优先考虑实时的,如果实时实现不了再考虑离线的方式。 实时数据仓库,已经被很多公司所接受,而且接触很多About云社区会员,都在筹备搭建实时数据仓库。 1.那么实时数据仓库有哪些特点:
下图是一张非常经典的数据分析技术演进图,从中可一窥整体发展历程。本文将按时间顺序盘点下各阶段产品及技术特点,并预测下未来发展方向。
数据,对一个企业的重要性不言而喻,如何利用好企业内部数据,发挥数据的更大价值,对于企业管理者而言尤为重要。作为最传统的数据应用之一,数据仓库在企业内部扮演着重要的角色,构建并正确配置好数据仓库,对于数据分析工作至关重要。一个设计良好的数据仓库,可以让数据分析师们如鱼得水;否则可能使企业陷入无休止的问题之中,并在未来的企业竞争中处于劣势。
2021年,我们看到围绕现代数据栈的兴起出现了相当大的加速效应。我们现在有一个海啸般的通讯、影响者、投资者、专门的网站、会议和活动来宣扬它。围绕现代数据栈的概念(尽管仍处于早期阶段)与云中数据工具的爆炸性增长紧密相连。云计算带来了一种新的基础设施模式,它将帮助我们快速地、程序化地、按需地建立这些数据栈,使用像Kubernetes这样的云原生技术、像Terraform这样的基础设施即代码以及DevOps的云计算最佳实践。因此,基础设施成为构建和实施现代数据栈的一个关键因素。 当我们已经进入2022年,我们可以
随着越来越多的公司依靠数据来推动关键业务决策、改进产品供应并更好地服务客户,公司捕获的数据量比以往任何时候都多。Domo 的这项研究估计,2017 年每天会生成 2.5 百亿字节的数据,到 2025 年,这一数字将增加到 463 艾字节。但如果公司不能快速利用这些数据,那么这些数据又有什么用呢?针对数据分析需求的最佳数据存储这一话题长期以来一直存在争议。
“【报告下载】后台回复关键词“数据智能报告”可免费下载数据猿最新发布的完整高清版《2021中国数据智能产业发展报告》
2021 年初,在 InfoQ 全年技术趋势展望中,数据湖与数据仓库的融合,成为大数据领域的趋势重点。直至年末,关于二者的讨论依然热烈,行业内的主要分歧点在于数据湖、数据仓库对存储系统访问、权限管理等方面的把控;行业内的主要共识点则是二者结合必能降低大数据分析的成本,提高易用性。
本文是“2021 InfoQ 年度技术盘点与展望”系列文章之一,由 InfoQ 编辑部制作呈现,重点聚焦大数据领域在 2021 年的重要进展、动态,希望能帮助你准确把握 2021 年大数据领域的核心发展脉络,在行业内始终保持足够的技术敏锐度。 “InfoQ 年度技术盘点与展望”是 InfoQ 全年最重要的内容选题之一,将涵盖架构、AI、大数据、大前端、云计算、数据库、中间件、操作系统、开源、编程语言十大领域,后续将聚合延展成专题、迷你书、直播周、合集页面,在 InfoQ 媒体矩阵陆续放出,欢迎大家持续关注。
作为近期火爆的话题之一,snowflake的上市无疑吸引了很多人的眼球。那在其高涨的市值背后,又有着什么样的原因?它会一直火爆下去吗?云计算、大数据,这些似乎已经有些落伍的概念,为何又重新吸引了人们的眼球?本文综合了多篇资料,尝试从更多角度加以解读。
为适应数据应用需求,大数据平台架构持续演进,历经数据仓库、数据湖两个阶段。2020年,湖仓一体概念提出,湖仓一体架构因能实现数据资产统一管理、降低数据冗余、降低大数据平台架构运维复杂性,将成为大数据平台的主流架构。
作者 | 蔡芳芳 过去几年,数据仓库和数据湖方案在快速演进和弥补自身缺陷的同时,二者之间的边界也逐渐淡化。云原生的新一代数据架构不再遵循数据湖或数据仓库的单一经典架构,而是在一定程度上结合二者的优势重新构建。在云厂商和开源技术方案的共同推动之下,2021 年我们将会看到更多“湖仓一体”的实际落地案例。InfoQ 希望通过选题的方式对数据湖和数仓融合架构在不同企业的落地情况、实践过程、改进优化方案等内容进行呈现。本文,InfoQ 采访了 OPPO 云数架构部部长鲍永成,请他与我们分享 OPPO 引入数据湖和数
笔者在学习过程中遇到的大数据框架,系统和数据库遇到的一些问题总结,也分享给大家一起学习。
多云的兴起,源于用户应用对于基础设施、云服务功能、安全性等的差异化需求,用户希望根据需求将应用、数据因“云”制宜,实现业务的高度灵活性和高效性。这也直接驱动着云原生数据仓库等一批云原生应用的流行,以及存储等基础设施加速走向变革。
12月20日,在腾讯2020 Techo Park开发者大会大数据专场上,腾讯云大数据产品总经理聂晶对数据仓库近30年发展历程做出总结,并分享了他对目前行业的认知以及未来发展的判断。聂晶表示,当前技术环境变化飞速,单一主体企业难以应对数仓领域爆发式发展挑战,腾讯云希望通过开放开源的生态给用户带来更为透明和精细化的技术及产品服务,助力企业生产力加速提升。 数据仓库从1991年被正式提出,历经近30年的发展历程,企业对数据仓库的重要性感知愈加强烈,同时数据仓库在企业端越来越走向成熟和理性。 “企业不再停留
领取专属 10元无门槛券
手把手带您无忧上云