首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Caffe的框架

    Caffe遵循了神经网络的一个假设:所有的计算都是以layer形式表示的,layer的作用就是根据输入数据,输出一些计算以后的结果。以卷积为例,就是输入一幅图像,然后与这一层的参数(filter)进行卷积运算,然后输出卷积的结果。每一个layer需要进行两种运算:1.forward,从输入计算输出;2.backward根据上面的梯度(gradient)来计算相对于输入的梯度。在每个layer都实现了这两个函数以后,我们可以将很多层连接成一个网络,这个网络做的事情就是输入我们的数据(图像或者语音或者whatever),然后来计算我们需要的输出(比如说识别的label)。在训练时,我们可以根据已有的label来计算loss和gradient,然后用gradient来update网络的参数。这个就是Caffe的一个基本流程!

    02
    领券