首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人们在哪里获得旋转加载图像?

人们在哪里获得旋转加载图像?

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 手把手教你使用TensorFlow生成对抗样本 | 附源码

    摘要: 本文使用TensorFlow一步一步生成对抗样本,步骤明确清晰。首先生成的对抗样本不具有旋转鲁棒性,后面使用同样的方法生成具有鲁棒性的对抗样本,适合初学者对生成对抗样本的入门及动手实验。 如果说卷积神经网络是昔日影帝的话,那么生成对抗已然成为深度学习研究领域中一颗新晋的耀眼新星,它将彻底地改变我们认知世界的方式。对抗学习训练为指导人工智能完成复杂任务提供了一个全新的思路,生成对抗图片能够非常轻松的愚弄之前训练好的分类器,因此如何利用生成对抗图片提高系统的鲁棒性是一个很有研究的热点问题。 神经网络合

    05

    计算机视觉最新进展概览(2021年5月30日到2021年6月5日)

    现有的旋转目标检测器大多继承自水平检测范式,因为后者已经发展成为一个成熟的领域。 然而,由于当前回归损失设计的局限性,尤其是对于大纵横比的目标,这些检测器难以在高精度检测中突出表现。 本文从水平检测是旋转物体检测的一种特殊情况出发,从旋转与水平检测的关系出发,将旋转回归损失的设计从归纳范式转变为演绎方法。 在动态联合优化过程中,估计的参数会以自适应和协同的方式相互影响,因此如何调节旋转回归损失中的耦合参数是一个关键的挑战。 具体来说,我们首先将旋转的包围框转换为二维高斯分布,然后计算高斯分布之间的Kullback-Leibler Divergence (KLD)作为回归损失。 通过对各参数梯度的分析,我们发现KLD(及其导数)可以根据对象的特性动态调整参数梯度。 它将根据长宽比调整角度参数的重要性(梯度权重)。 这种机制对于高精度检测是至关重要的,因为对于大纵横比物体,轻微的角度误差会导致严重的精度下降。 更重要的是,我们证明了KLD是尺度不变的。 我们进一步证明了KLD损失可以退化为流行的 损失用于水平检测。

    03
    领券