首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Nat. Commun. | 用深度学习预测SARS-CoV-2的进化

    今天为大家介绍的是来自Shiwei Sun, Peter Pak-Hang Cheung和 Xin Gao团队的一篇与SARS-CoV-2相关的论文。SARS-CoV-2的持续演变对公共卫生构成了重大威胁。由于庞大的序列空间,了解潜在的抗原变化具有重要意义,但也具有挑战性。在这里,作者引入了机器学习引导的抗原进化预测(MLAEP)方法,它结合了结构建模、多任务学习和遗传算法,通过体外定向进化模拟来预测病毒的适应性景观并探索抗原进化。通过分析现有的SARS-CoV-2变异,MLAEP准确地推断了抗原进化轨迹上的变异顺序,与相应的采样时间相关联。作者的方法在免疫功能受损的COVID-19患者和新出现的变异(如XBB1.5)中识别出了新的突变。

    02

    Nat. Med. | 基于深度学习的蛋白质-蛋白质相互作用分析预测SARS-CoV-2的传染性与变异进化

    今天我们介绍由北京邮电大学网络与交换技术国家重点实验室的王光宇等学者发表在Nature Medicine上的工作。该工作介绍了一个基于人工智能框架UniBind,该框架利用深度学习和蛋白质结构分析来预测SARS-CoV-2的刺突蛋白突变的影响。该工作强调了在病毒宿主相互作用和新的SARS-CoV-2变体出现中理解蛋白质相互作用的重要性。UniBind整合了蛋白质三维结构和结合亲和力数据,预测了刺突蛋白突变如何影响其与人类ACE2受体和中和抗体的结合亲和力。该框架在基准数据集上进行了测试,并通过实验证实了其有效性。UniBind还能够有效预测刺突蛋白变体对结合亲和力的影响,并可以应用于预测宿主对SARS-CoV-2变体的易感性和未来病毒变体的进化趋势。该工作强调了UniBind作为问题变体的预警系统的潜力,以及其促进蛋白质相互作用研究的能力。总体而言,UniBind使用异质数据集提供了全面且高容量的蛋白质相互作用分析,有助于人类理解SARS-CoV-2的感染性和变体进化。

    03

    Nat. Methods | 张阳团队开发远超AlphaFold2精度的蛋白互作结构预测算法

    基因是构造生命的基本蓝图,而蛋白质则是生命功能的执行者和生命现象的体现者。细胞中的蛋白质主要是通过与细胞内其它蛋白质的相互作用来实现其绝大部分生物学功能。因此,蛋白质-蛋白质相互作用(简称“蛋白质互作”)在生命功能的实现以及生物的进化过程中都扮演极其重要的角色。例如,抗体和抗原蛋白相互作用可以帮助生命个体识别和抵御外界病原体的入侵;受体和配体蛋白相互作用可以触发细胞信号传导通路;酶蛋白和底物相互作用可以催化新陈代谢的进程等等。它们在生物功能上的这种特殊的重要性,也使得蛋白质互作成为许多现代药物设计的关键靶点。

    01

    bioRxiv | AI辅助设计针对SARS-CoV-2的表位疫苗

    COVID-19大流行病给社会带来的沉重负担,引发了开发治疗或预防战略的竞赛。其中,抗体和疫苗因其高度的特异性、药物间相互作用的概率低以及潜在的长期保护作用而特别具有吸引力。虽然眼前的威胁证明了研究的速度,但治疗策略的实施不能不考虑安全性。疫苗接种或抗体治疗后,有几种潜在的不良事件报告,但最重要的有两种:抗体依赖性增强(ADE)和细胞因子风暴综合征(CSS)。据报道,T细胞的耗竭或耗尽与COVID-19患者的预后恶化有关。这一观察结果表明,疫苗在引起细胞免疫方面具有潜在的作用,可能同时限制了ADE和CSS的风险。新开发疫苗的所有方面都可能影响其有效性和安全性。这项工作中,研究人员基于人工智能和生物信息学方法支持基于表位疫苗的设计。

    04

    开篇-单细胞测序分析00

    回想起来自己从事生物相关的研究已经大概15年了,从研究生进入实验室也有10年时间,陆续从硕士,博士到博后,研究地点也从化学学院,到药学院再到医院科室。自己做的研究是“干-湿”实验结合的,发表的成果也是各自一半,但是综合起来还是生物信息分析的文章发表的影响因子高一些。到现在由于工作场所频繁发生变化,反而没有稳定的场所做实验,所以愈发的在生物信息方面下较多的功夫。因此我对这十几年来的生信研究进行总结,希望帮助新手克服生物信息陡峭的学习曲线,当然我自己也不是科班出身的,也希望与你一起交流学习。所有的内容均是以自己的实验数据(会明确下载地址给读者)操作来进行,避免某些在demo运行很好却在自己的环境中出现bug的情况。最后一点,现在通讯太发达了,欢迎大家与我V:cll7658直接交流共同进步。

    00

    Nat. Biotechnol. | 从通用蛋白质语言模型中高效演化人类抗体

    今天为大家介绍的是来自斯坦福大学研究团队的一篇利用语言模型模拟人类抗体自然演化的论文。自然进化必须探索广阔的可能序列空间,以寻找稀有但理想的突变,这表明从自然进化策略中学习可以指导人工进化。在这里,作者报告了一种利用通用蛋白质语言模型能够高效演化人类抗体的方法,该方法通过提出在进化上是合理的突变来改进抗体,尽管该模型没有提供关于目标抗原、结合特异性或蛋白质结构的任何信息。作者进行了七种抗体的语言模型引导提高亲和力实验,每种抗体仅经历两轮实验进化,筛选了每种抗体的20个或更少的变种。结果显示,作者成功将四种临床相关、高度成熟的抗体的结合亲和力提高了多达七倍,将三种未成熟抗体的结合亲和力提高了多达160倍。此外,许多设计还展示出良好的热稳定性和对埃博拉病毒和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)假病毒的中和活性。改善抗体结合的相同模型还可以指导不同蛋白质家族和选择压力下的高效进化,包括抗生素抗性和酶活性,这表明这些结果适用于许多情境。

    03

    纯生信也能发到18分!这个预后型Biomarker套路,感觉没什么难度!

    我们都知道癌症的特点是不同的基因改变积累,导致癌细胞表面出现不同的新抗原表达。人体免疫系统是机体发现和消灭肿瘤细胞的可靠“人体警察”。然而,肿瘤细胞可以利用机体内的免疫调节剂促进其自身发生“免疫逃逸”,人们先前认为的可靠“人体警察”则成为肿瘤逃逸的“帮凶”,这一发现影响了免疫抗癌疗法的发展趋势,比如抗PD-1或抗CTLA4抗体“免疫检查点抑制剂”。抗PD-1药物如nivolumab或pembrolizumab对超过15种癌症类型的临床疗效显著。这些药物对22种癌症的总体反应率(ORR)在0%到50%之间各不相同。因此,有必要筛选抗PD-1治疗的获益人群。那么预测抗PD-1单药治疗疗效的可重复性生物标记物可能具有临床价值。在作者团队先前的研究中已经报道了使用nCounter平台检测免疫相关基因(包括PD-1)的表达是可重复的,且与65例晚期肿瘤患者的抗PD-1单药疗法疗效相关。在这里,我们假设肿瘤样本中PD-1 mRNA的丰度可以解释不同类型肿瘤抗PD-1单药治疗后总ORR的差异。

    02
    领券