人群画像分析是对已经创建完成的人群进行画像分析,目的是从不同角度更深入地认识人群用户并挖掘其人群特点。
导语 | We 分析是微信小程序官方推出的、面向小程序服务商的数据分析平台,其中画像洞察是一个非常重要的功能模块。微信开发工程师钟文波将描述 We 分析画像系统各模块是如何设计,在介绍基础标签模块之后,重点讲解用户分群模块设计。希望相关的技术实现思路,能够对你有所启发。 目录 1 背景介绍 1.1 画像系统简述 1.2 画像系统设计目标 2 画像系统整体概述 3 基础标签模块 3.1 功能描述 3.2 技术实现 4 用户分群模块 4.1 功能描述 4.2 人群包实时预估
开发画像后的标签数据,如果只是“躺在”数据仓库中,并不能发挥更大的业务价值。只有将画像数据产品化后才能更便于业务方使用。在本文中,Web端展示的数据都读取自MySQL这类的关系型数据库,MySQL中存储的数据源自Hive加工后,通过Sqoop同步的结果集。
导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。企业内保存了大量的原始数据和各种业务数据,这是企业经营活动的真实记录,如何更加有效地利用这些数据进行分析和评估,成为企业基于更大数据量背景的问题所在。
数据化运营时代,运营方式从过去粗放式转向精细化。用户画像受到热宠,不搞用户画像都不好意思说在做精细化运营了。各种用户画像标签体系建设、从0到1教你构建用户画像之类的文章广泛传播。前几天听到有同学在规划CDP平台时,认为画像即标签,标签就是画像,用户画像和用户分群是同一主体的不同叫法,产品架构设计时,边界不清,功能交错。于是,觉得还是要回归到最基本的问题,把这几个概念厘清一下。
随着用户的一切行为数据可以被企业追踪到,企业的关注点日益聚焦在如何利用大数据为经营分析和精准营销服务,而要做精细化运营,首先要建立本企业的用户画像。
随着移动互联网迅速发展,大数据技术为企业带来了前所未有的发展机遇,然而中小企业和传统行业由于其数据量缺乏且单一,技术投入不足的劣势,面对大数据技术发展带来的红利只能望洋兴叹。
以上场景都涉及到“用户画像”的使用。我们需要定义用户群体,需要更了解用户,自然而然就会去认知用户,收集用户的相关信息,这些步骤其实就是在逐步构建用户画像。接下来,我将带你通过4个问题一次性弄明白用户画像。
画像数据对于画像平台无疑是非常重要的,按什么样的数据模型存储画像数据直接影响了上层画像平台所能支持的功能范围,本文内容主要介绍3种常见的画像数据模型及其适用的平台功能。
上次我们以O2O产品为例讨论了用户画像的实践,这次我们将以OTA产品为例,进一步讨论如何依托数据,搭建用户画像系统。 思 考 用户画像是什么? 简单来说,用户画像就是从不同的维度来表达一个人,这些维度可以是事实的,可以是抽象的;可以是自然属性,比如性别、年龄;可以是社会属性,比如职业、社交特征;可以是财富状况,比如是否高收入人群,是否有固定资产;可以是家庭情况,比如是否已经结婚,是 否有孩子;可以是购物习惯,比如喜欢网购还是喜欢逛商场;可以是位置特征,比如在哪个城市生活;可以是其他行为习惯。 总之,所有大家
写在前面 本篇内容来源于网络,因为工作需要,所以就去网上查找资料,顺便整理一下分享给大家,小红自己也是在学习阶段, 做这个公众号的目的也是为了输出自己学习的内容,一方面是为了自己更好的学习,另一方面希
二是分享自如的达芬奇·用户画像平台的建设实践,帮助大家从整到分地了解用户画像的建设过程,以及应有的功能模块;
[ 导读 ]用户画像作为当下描述分析用户、运营营销的重要工具,被全部互联网人熟知,用户画像的定义并不复杂,是系统通过用户自行上传或埋点上报收集记录了用户大量信息,为便于各业务应用,将这些信息进行沉淀、加工和抽象,形成一个以用户标志为主key的标签树,用于全面刻画用户的属性和行为信息,这就是用户画像。
以上场景都涉及到“用户画像”的使用。我们需要定义用户群体,需要更了解用户,自然而然就会去认知用户,收集用户的相关信息,这些步骤其实就是在逐步构建用户画像。
精准化营销一直以来都是互联网营销业务在细分市场下快速获取用户和提高转化的利器。在移动互联网爆发的今天,数据量呈指数增长,如何在移动和大数据场景下用数据驱动进行精准营销,从而提高营销效能,成为营销业务部门的主要挑战之一,同时也是大数据应用的一个重要研究方向。本文通过数据体系架构和技术实现案例,分享美团大众点评数据应用团队在这个方向上的一些尝试和实践经验。 总体框架 在介绍数据体系和框架前,为了方便大家理解,先简单阐述一下O2O营销的基本组成:O2O营销是由营销发生的渠道(站内,站外)与营销的主题业务(流量,交
移动互联时代大浪淘沙,「数据」亦主沉浮。各家公司在追逐产品不断完善的同时,也都在累积各自的用户数据反哺产品。而随着数据的不断累积庞大也容易带来一些难以用老旧方法解决的问题,这些问题驱使着企业的大数据体系迭代演进,也再次把「大数据技术」推向高潮。
在【rainbowzhou 面试13/101】技术提问--说说你了解的大数据应用产品?中,聊了聊用户画像是什么、如何用、前置条件以及它与大数据的关系。今天想详细聊聊关于用户画像平台的构成,希望对大家有所帮助。
之前开发过一个画像项目,并为大家介绍了项目过程中部分开发的细节,例如PSM,RFE,USG等模型的标签开发落地。但是后来考虑到对于没有画像开发经验,尤其是零基础的大数据小白而言不是很友好,理解起来也不是很容易。正好最近在看一些文献资料,所以,我又专门开了一个专题,打算重新为大家讲解关于用户画像的知识。感兴趣的小伙伴记得关注加星标,每天第一时间收获技术干货!
用户精细化分类也可以称做用户画像,是目前很常见的一种运营手段,目的是为了更好的服务不同性质的客户,提高每个环节的转化率,最大程度挖掘客户价值,创造利润。
PaddleSpatial是基于百度飞桨深度学习框架开发的时空大数据计算工具和平台,融合了百度领先的区域分割、时间序列、城市迁移学习等时空数据处理能力。本次将由百度研究院资深研究员、PaddleSpatial技术负责人周景博,为大家分享PaddleSpatial如何实现深度学习与时空大数据的结合,以助力智慧城市发展。
用户画像,即用户信息标签化,是大数据精细化运营和精准营销服务的基础。设计从基础设施建设到应用层面,主要有数据平台搭建及运维管理、数据仓库开发、上层应用的统计分析、报表生成及可视化、用户画像建模、个性化推荐与精准营销等应用方向。
用户画像与实时数据分析是互联网企业的数据核心。知乎数据赋能团队以 Apache Doris 为基础,基于云服务构建高响应、低成本、兼顾稳定性与灵活性的实时数据架构,同时支持实时业务分析、实时算法特征、用户画像三项核心业务流,显著提升对于时效性热点与潜力的感知力度与响应速度,大幅缩减运营、营销等业务场景中的人群定向成本,并对实时算法的准确率及业务核心指标带来明显增益。
知乎业务中,随着各业务线业务的发展,逐渐对用户画像和实时数据这两部分的诉求越来越多。对用户画像方面,期望有更快、更准、更方便的人群筛选工具和方便的用户群体分析能力。对于实时数据方面,期望拥有可以实时响应的用户行为流,同时在算法特征、指标统计、业务外显等业务场景有愈来愈多的数据实时化的诉求。
1、用户画像:用户画像产生的原因、用户画像概述、用户画像构成原则、第一类用户画像、第二类用户画像 参考:什么是用户画像?如何构建用户画像? 企业为什么要绘制用户画像?谈谈用户画像的真正作用 干货丨用户画像,没你想的那么简单!
在画像系统搭建的过程中,数据存储的技术选型是非常重要的一项内容,不同的存储方式适用于不同的应用场景。本章主要介绍使用Hive、MySQL、HBase、Elasticsearch存储画像相关数据的应用场景及对应的解决方案。
业务中,随着各业务线业务的发展,逐渐对用户画像和实时数据这两部分的诉求越来越多。对用户画像方面,期望有更快、更准、更方便的人群筛选工具和方便的用户群体分析能力。对于实时数据方面,期望拥有可以实时响应的用户行为流,同时在算法特征、指标统计、业务外显等业务场景有愈来愈多的数据实时化的诉求。
【导读】2017年 11月4日,大数据系统与应用研讨会在中科院计算所举行。会议邀请了中科院计算所程学旗老师和其他来自联想、京东、美团点评、小米等一线互联网公司大数据领域的专家,通过主题演讲,分享并深度探讨了大数据技术在业界一线的最佳实践和创新应用。 小米大数据总监司马云瑞为大会带来了题为《小米用户画像的演进及应用》的分享报告,循序渐进地分享了小米用户画像系统的建设和应用。小米公司经过7年的发展,积累了海量的日志和用户行为数据。基于全生态、多维度的数据资产,构建了丰富的用户画像体系,在业务运营、广告、互联网
用户画像,即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或者产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
为了高效地使用画像标签,需要对标签进行统筹管理。标签管理最基本的功能是对标签进行增删改查操作,其中新增标签的方式多种多样;其次是围绕标签数据的信息管理,其中包括标签的分类、标签值分布以及标签生产调度信息等。
作者:fionaqu 腾讯WXG程师 |导语 日常工作中,我们常常需要了解使用我们产品的用户到底是什么人,他们的消费习惯是怎样的,行为轨迹是怎样的等等…..正好最近读了《用户画像:方法论与工程化解决方案》,对用户画像有一些体系化的学习,同时结合日常工作经验对用户画像的方案论及实施方法进行了体系化的整理。 日常工作中,我们常常需要了解使用我们产品的用户到底是什么人,他们的消费习惯是怎样的,行为轨迹是怎样的等等…..正好最近读了《用户画像:方法论与工程化解决方案》,对用户画像有一些体系化的学习,同时结合日常
作者:@fengyoung 于2015小光棍节 原文:http://www.wbrecom.com/?p=588 社交媒体(Social Media)相对于传统互联网媒体的最大区别是通过建立人与人之间
A data management platform (DMP) is a unifying platform to collect, organize and activate first-, second- and third-party audience data from any source, including online, offline, mobile, and beyond. It is the backbone of data-driven marketing and allows businesses to gain unique insights into their customers.
伴随着大数据应用的讨论、创新,个性化技术成为了一个重要落地点。相比传统的线下会员管理、问卷调查、购物篮分析,大数据第一次使得企业能够通过互联网便利地获取用户更为广泛的反馈信息,为进一步精准、快速地分析用户行为习惯、消费习惯等重要商业信息,提供了足够的数据基础。伴随着对人的了解逐步深入,一个概念悄然而生:用户画像(UserProfile),完美地抽象出一个用户的信息全貌,可以看作企业应用大数据的根基。 什么是用户画像? 男,31岁,已婚,收入1万以上,爱美食,团购达人,喜欢红酒配香烟。 这样一串描述即为用户
上一篇文章已经为大家介绍了 HBase 在用户画像的标签数据存储中的具体应用场景,本篇我们来谈谈 Elasticsearch 的使用!
金融科技&大数据产品推荐:Chinapex创略智能客户数据平台——开启智慧营销之旅
对于品牌主来说,做投放决策时最关注的就是自己的目标群体是哪些人,如何选择渠道才能覆盖到目标人群,投放的时长和频率又该如何依据人群特性进行配置。
导读:在互联网步入大数据时代后,用户行为给企业的产品和服务带来了一系列的改变和重塑,其中最大的变化在于,用户的一切行为在企业面前是可“追溯”“分析”的。企业内保存了大量的原始数据和各种业务数据,这是企业经营活动的真实记录,如何更加有效地利用这些数据进行分析和评估,成为企业基于更大数据量背景的问题所在。随着大数据技术的深入研究与应用,企业的关注点日益聚焦在如何利用大数据来为精细化运营和精准营销服务,而要做精细化运营,首先要建立本企业的用户画像。
由于TESLA集群无法直接操作MongoDB,需要将TDW里面的用户画像数据,通过洛子系统导出至HDFS,再与MongoDB中原有群画像进行合并。
电商发展至今,618、818、双11这样的促销节点已然成为品牌商家常态化的营销节奏,成为寻求生意增长的确定性节点。
背景 用户流量从搜索引擎为入口的增量时代到移动互联网普及人口红利不再的存量时代,这个变化对每个公司的获客成本,运营思路都产生了很大的影响,在流量日益枯竭,获客成本越来越高的时代,伴随着大数据、精细化运营、人工智能、机器学习等一大波新技术和概念的崛起、普及,它们之间有何关联?如今互联网产品又该如何运营、攻城略地?本文介绍的用户画像或许能带来一点思路。 1、用户画像的作用与意义 1.1 作用 用户画像承载了两个业务目标:一是如何准确的了解现有用户;二是如何在茫茫人海中通过广告营销获取类似画像特征的新用户。比如在
点击蓝字 关注我们 // Q DataTalk和DataInsight分别适用于什么场景? A 使用过DataTalk和DataInsight的小伙伴一定有这样的疑惑,接下来的内容将给你答案! ►►► 一句话概括 给自己 DataInsight 为大家 DataTalk 如果你主要是给自己做数据分析,任意字段下钻探索数据寻找答案,报表样式/灵活定制不重要,自己找到答案最重要——那么用DataInsight灯塔分析; 如果你主要是给大家配报表,帮助别人更低门槛地查阅数据,报表和交互随心所欲定制,满足你
用户模型和用户画像的区别。用户模型是指真实用户的虚拟代表,在真实数据的基础上抽象处理的一个用户模型,是产品在描述用户需求时使用的概念。用户画像是从海量的用户数据中,建模抽象出每个用户的属性标签体系,这些属性通常要具有一定的商业价值。
微信前几天发布了通告https://mp.weixin.qq.com/cgi-bin/announce?action=getannouncement&announce_id=11652079103zi
本文长度为2815字,预估阅读时间4分钟。 我们今天要向大家介绍的是基于朴素贝叶斯的用户数据挖掘。 做广告优化这么久了,也看过不少广告后台的受众画像,总体来说,对广告数据分析和效果优化的参考价值有限,不过聊胜于无。 究其原因,在于很多广告后台的受众画像数据,只告诉了我们看了广告的这部分人群是什么样的,而缺失了发生转化的这部分用户的画像数据。原因主要有两点: 一是在大部分广告投放过程中,前后端数据是割裂的,换句话说,媒体能知道你花钱买的广告给了谁看,但一般不知道哪些人发生了转化;而甲方通过自己的监测,可以知道
今年的“金瑞奖”名单已公布,不少人发现除了网易、阿里这样的拿奖“老手”,还杀出了一匹黑马——华坤道威数据科技。人们不禁好奇,在这个角逐最激烈的大数据产品创新奖中,华坤道威是如何跟“大佬们”并肩站上领奖台的? 走红不是偶然,数据就是基因 事实上,华坤道威并不是“突然”走红的,早在2000年就从数据分析和市场研究起家,先后服务过宝洁、强生、联合利华、中国联通这样的行业顶尖企业及世界500强公司。十余年的厚积深耕,“用数据说话、凭洞察取胜”早已成了华坤道威的企业基因。 直到大数据时代的来临,这家低调却实力不凡
企业运营对于企业来说是非常重要的,因为良好的运营体系会让企业在市场宣传中轻松应对各种情况。当我们迈入数据时代的时候,企业在运营上相对应的也发生了改变,从最初的粗放式运营逐渐过渡到精细化运营。
领取专属 10元无门槛券
手把手带您无忧上云