作者:汪铖杰 首发于 腾讯云技术社区 量子位 已获授权编辑发布 优图实验室研究人脸技术多年,不仅在技术方面有很好的积累,而且在公司内外的业务中有众多应用。笔者作为优图实验室人脸研究组的一员,在与产品、商务、工程开发同事交流过程中发现:不管是“从图中找到人脸的位置”,或是“识别出这个人脸对应的身份”,亦或是其他,大家都会把这些不同的人脸技术统称为“人脸识别技术”。 因此,笔者整理了一些常见人脸技术的基本概念,主要用于帮助非基础研究同事对人脸相关技术有一个更深入的了解,方便后续的交流与合作。 人脸技术基本概念介
人脸技术基本概念介绍 1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相
1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输
目前TSINGSEE青犀视频正在对不同AI设备的功能进行对接测试,本文分享一下大华AI设备以通道或者库为对象布控的流程。
大家好,我是马琦钧,Datawhale成员,毕业于浙江农林大学,统计学/会计学双学位,获得过由阿里云、谷歌、百度、CVPR、思否、极棒等举办的相关赛事奖项。
上一篇介绍了NodeJS实现人脸识别中的人脸注册,搜索,检测功能。可以看到其实抛开用户量不说,其实任何想要实现的功能最终用NodeJS都是可以实现的。今天我们来看下SDK文档关于人脸识别其他的接口,我们可以来看看整套人脸识别具体有什么功能,我们可以怎么在实际应用中去进行应用呢?
在金融、社交媒体、安全监控等多个领域,图像内容的审核和风险控制变得日益重要。视觉风控技术,作为人工智能领域的一项重要应用,正在帮助企业和组织提高其风险管理的效率和准确性。本文将探讨视觉风控技术能做哪些工作,以及这些工作如何用于风控。
在角色扮演游戏(RPG)中,如现代经典犯罪游戏侠盗猎车手,许多玩家是根据自己的形象来塑造游戏中的角色。但是现在的内置字符定制系统越来越复杂,它们可能需要手动调整数十个甚至数百个参数,要花费几个小时才能完成。
视觉 AI 作为一个已经发展成熟的技术领域,具有丰富的应用场景和商业化价值,全球 40% 的 AI 企业都集中在视觉 AI 领域。近年来,视觉 AI 除了在智能手机、智能汽车、智慧安防等典型行业中发挥重要作用外,更全面渗入细分的实体行业,催生了如车站人脸实名认证、人脸支付、小区人脸门禁管理、酒店自助人脸实名登记等视觉 AI 的应用。
GTA 新出的游戏预告片看了吗?据说,这个预告片已经破了三项吉尼斯世界纪录,观看次数已经破亿。
6月29日,音视频及融合通信技术技术沙龙圆满落幕。本期沙龙特邀请腾讯云技术专家分享关于最新的低延迟技术、全新的商业直播方案等话题,针对腾讯云音视频及融合通信产品的技术全面剖析,为大家带来纯干货的技术分享。下面是孙祥学老师关于AI技术在视频智能识别和分析中的应用,以及实际落地过程中遇到的挑战以及解决办法的分享。
"RequestURL":"http://192.168.1.133:10003/VIID/Persons",
继神经网络推理框架 ncnn、TNN,动作检测算法 DBG,通用目标检测算法 OSD,人脸检测算法 DSFD、人脸属性算法 FAN等众多优秀的框架、算法开源后,腾讯优图实验室又有一项人脸识别算法研究项目——TFace正式拥抱开源啦!
部分来源于《机器人大讲堂》和《2017年中国人脸识别未来发展路径、市场需求、市场发展空间预测》 近年来由于深度学习爆炸式的发展,已经带动了整个行业的发展。身为人工智能的一份子,为该技术骄傲自豪。在丰
首先祝大家七夕情人节愉快,能和喜欢的人度过浪漫的一天,也祝在科研的同学抽出时间陪伴你的伴侣,一起度过一年一次的中国情人节,若还处于单身的同学,希望你们不仅科研成功、还能遇到自己喜欢的他(她)!
继神经网络推理框架 ncnn、TNN,动作检测算法 DBG,通用目标检测算法 OSD,人脸检测算法 DSFD、人脸属性算法 FAN等众多优秀的框架、算法开源后,腾讯优图实验室又有一项人脸识别算法研究项目——TFace正式拥抱开源啦! TFace开源地址: https://github.com/Tencent/TFace 项目背景 TFace是由腾讯优图实验室研发的人脸识别算法研究项目,其中TFace中的T意为“trusty”,表达了团队在可信人脸识别技术方向上的愿景。 人脸识别算法是指在检测到人脸
首先,我们需要一种在图像中查找人脸的方法。我们可以使用一种称为MTCNN(多任务级联卷积网络)的端到端方法。
4 月 7 日,来自清华的 RealAI(瑞莱智慧)发布了 RealSafe 人工智能安全平台,随之推出的测试结果令人惊讶:通过平台对微软、亚马逊云服务的人脸比对演示平台进行测试显示,基于 RealSafe 平台生成的对抗样本「噪音」能够极大干扰两大主流人脸比对平台的识别结果。
支持使用SDXL模型和一定的选项直接生成高清大图,不再需要上传模板,需要16GB显存
「 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》」
肖战发型适配教程来啦!说到肖战,让人不得不想到他可盐可甜的颜值,肖战的《陈情令》使得他爆红了一把,也有不少人因此成为了肖战的迷妹。的确,从外形上看的话,也算是实打实的帅哥了;那么,长得这么帅,有没有什么秘诀呢?很多人不知道看似随随便便站在那就很吸睛的肖战,不同的发型又给人完全不同的感觉。 今天之后你就不用再去找 老师设计发型了,本篇博文就教你基于 “ 换脸技术” 换肖战几款他常见的发型,快来看看你最适合哪一款叭~~~ 目录 1 导入库 2 从图像中找人脸 3 换脸 4 运行结
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
6月初北京的疫情响应已经降到了三级,没想到中旬时疫情又卷土重来,每天都有10~30个确诊病例的新增,按专家的说法秋冬季还会更严重。公司之前一直使用基于指纹的上下班签到机制,疫情期间为了减少人员接触开始改用人脸打卡。当时以为只是应急用一下,疫情有一两个月就结束了,使用的第三方的人脸打卡程序。但目前已经过去5个月了,疫情还没有结束的迹象。继续使用第三方的打卡程序:一是数据不安全人脸&位置数据全被第三方收集走了,另一方面第三方没有提供接口无法和公司现有的考勤程序进行数据对接。公司希望实现自己的基于人脸打卡程序,这个重任当然就落到了我们开发部上,虽然没经验但咱们做为一个涉身职场多年的老将不能说不行啊。
2、opencv使用人脸识别过程中,需要引入haarcascade_frontalface_alt2.xml文件,如果放在项目的lib文件中,在打包的过程中能够打到包里,但是在动态引用的过程中,由于jar包中文件的引用出现混乱路径的情况,找不到文件。找到一个折中的办法,haarcascade_frontalface_alt2.xml文件放到固定目录下,再引用的时候,只需要读取固定的路径即可。
我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。 它的结构如下图所示: 1 Input Imag
这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如下图所示:
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
---- 新智元报道 编辑:桃子 如願 【新智元导读】自人脸识别问世以来,饱受争议,现今,微软宣布淘汰这项可以识别情绪的面部识别工具。 今天,微软暂停提供能识别情绪的AI。 这不是好事吗? AI识别情绪还真的不太稳定,没准儿就会人工智障... 就比如近日网上流传的这张图,董宇辉和韦神的眼神对比。 AI可以识别出「希望」和「力量」吗? 还真不好说... 微软:我关了 就在今天,微软宣布,逐步停止向公众提供基于AI进行面部分析的工具。 其中就包括可以从视频和图片中识别对象情绪的AI。 与此同时,
基于2-channel network的图片相似度判别 原文地址:http://blog.csdn.net/hjimce/article/details/50098483 作者:hjimce 一、相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《Learning to Compare Image Patches via Convolutional Neural Networks》,本篇文章对经典的算法Siamese Networks 做了改进。学习这篇pape
本文共两个部分,这是第一部分,其中介绍了 ASP.NET Core 3 中旨在将授权逻辑与基本的用户角色相分离的基于策略的授权模型。此部分提供了此授权进程的基于生物识别信息(如人脸识别或语音识别)的具体示例。在此示例中,检测到未经授权的入侵时,将限制进入建筑。Azure 机器学习内置的异常检测服务将评估入侵的严重性。
本文将详细介绍向量数据库这一创新性的数据库技术。我们将从多个角度、多个方向和多个思维角度分析和解释向量数据库的概念、原理和应用。向量数据库以向量为基本数据类型,具有高度可扩展性和高效的相似性搜索能力,被广泛应用于人脸识别、推荐系统、自然语言处理和图像检索等领域。
前段时间,JD搞了个猪脸识别的比赛,大家都看得沸沸扬扬,但是这个其实是一个很不错的AI+畜牧业的应用,比如在养牛行业。大家知道吗?牛其实不愿意看到人类的,他们会视人类为捕食者,因此养牛场的工作人员会给
因疫情影响 CVPR 2020 将于6月14日-19日 线上会议,今天官方终于放出了所有的论文列表,并开放下载。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
人脸识别技术原理简单来讲主要是三大步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选。根据人脸识别技术原理具体实施起来的技术流程则主要包含以下四个部分,即人脸图像的采集与预处理、人脸检测、人脸特征提取、人脸识别和活体鉴别。
人脸识别流程包括人脸检测、人脸对齐、人脸识别等子任务,这里优先总结功能相对齐全的开源项目,再总结完成单个子任务的开源项目。本文主要关注方法较流行且提供源码的开源项目,忽略了仅提供SDK的。
上图中从左到右依次是原图、photoshop去色结果、Matlab的rgb2gray函数处理效果、取rgb均值的效果、使用香港中文大学论文(见下)的结果、Glundland论文(见下)的结果。还有其他这方面研究有名的论文,见我的另一篇博文:http://blog.csdn.net/xingyanxiao/article/details/46891261
随着深度学习带来 AI 的第三次浪潮,对 AI 的相关讨论层出不穷,算法是大家关注的重点。
本系列是《玩转机器学习教程》一个整理的视频笔记。本章的最后一个小节介绍PCA在人脸识别领域的一个特殊的应用,也就是所谓的特征脸。本小节会介绍什么是特征脸,并通过可视化的方式直观的感受特征脸。
opencv官网下载windows安装包 https://opencv.org/releases/ 选择最新版4.1.1 下载完成后是一个opencv-4.1.1-vc14_vc15.exe,双击安装。
简单来讲,人脸识别这个问题,就是给定两个人脸,然后判定他们是不是同一个人,这是它最原始的定义。它有很多应用场景,比如银行柜台、海关、手机解锁、酒店入住、网吧认证,会查身份证跟你是不是同一个人。这个应用的主要特点是,在大多数场景下都需要你先提供一个证件,然后跟自己的人脸做比对。手机解锁可能是个例外,但也要求你提前注册一张人脸,然后再进行比对。这是最原始的形式,由用户直接提供需要对比的两个人脸。这也是最简单的形式,相当于做一个二分类。
本文来自旷视研究院,作者:闫东。AI 科技评论获授权转载。如需转载,请联系旷视研究院。
近年来,人工智能的发展速度十分惊人,在安防监控、工业制造、农业、教育、金融、医疗等领域中的应用越来越广泛,并且未来几年也将继续保持高速的发展趋势。通过人工智能技术提高自动化程度、减少人工干预、提高监管效率,已经成为当前的行业发展方向。今天来给大家盘点一下当前人工智能发展趋势下的一些常见AI算法以及应用场景。
目前人脸识别开源项目众多,但真正能方便快捷拿来就用、性能指标业界领先的开源库并不多,而最近刚刚开源的face.evoLVe绝对是不容忽视的力量。
近几年来,人工智能逐渐火热起来,特别是和大数据一起结合使用。人工智能的主要场景又包括图像能力、语音能力、自然语言处理能力和用户画像能力等等。这些场景我们都需要处理海量的数据,处理完的数据一般都需要存储起来,这些数据的特点主要有如下几点:
本文章我们来学习一下使用PaddlePaddle实现人脸对比和人脸识别,使用的训练数据集是CASIA-WebFace。
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
我叫陈新宇,在格灵深瞳负责数据流的研发,首先特别感谢如今老师,他们把Kafka一个优秀的消息中间件写出来,也感谢腾讯云做了调优工作,现在就该到我们这些做应用的人用它的时候了,我会从我们应用的层面讲一下它在我们PAAS平台中的应用,讲应用可能很难脱离业务,所以我可能会先给大家解释一下业务,这个业务中的应用,我觉得如何写卡,不卡如何设消费的骨肉普觉得这些东西大家可以自己看看文档,我就不给大家详细的描述了。
领取专属 10元无门槛券
手把手带您无忧上云