作者:汪铖杰 首发于 腾讯云技术社区 量子位 已获授权编辑发布 优图实验室研究人脸技术多年,不仅在技术方面有很好的积累,而且在公司内外的业务中有众多应用。笔者作为优图实验室人脸研究组的一员,在与产品、商务、工程开发同事交流过程中发现:不管是“从图中找到人脸的位置”,或是“识别出这个人脸对应的身份”,亦或是其他,大家都会把这些不同的人脸技术统称为“人脸识别技术”。 因此,笔者整理了一些常见人脸技术的基本概念,主要用于帮助非基础研究同事对人脸相关技术有一个更深入的了解,方便后续的交流与合作。 人脸技术基本概念介
人脸技术基本概念介绍 1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相
1. 人脸检测 “人脸检测(Face Detection)”是检测出图像中人脸所在位置的一项技术。 人脸检测算法的输入是一张图片,输出是人脸框坐标序列(0个人脸框或1个人脸框或多个人脸框)。一般情况下,输出的人脸坐标框为一个正朝上的正方形,但也有一些人脸检测技术输出的是正朝上的矩形,或者是带旋转方向的矩形。 常见的人脸检测算法基本是一个“扫描”加“判别”的过程,即算法在图像范围内扫描,再逐个判定候选区域是否是人脸的过程。因此人脸检测算法的计算速度会跟图像尺寸、图像内容相关。开发过程中,我们可以通过设置“输
目前TSINGSEE青犀视频正在对不同AI设备的功能进行对接测试,本文分享一下大华AI设备以通道或者库为对象布控的流程。
上一篇介绍了NodeJS实现人脸识别中的人脸注册,搜索,检测功能。可以看到其实抛开用户量不说,其实任何想要实现的功能最终用NodeJS都是可以实现的。今天我们来看下SDK文档关于人脸识别其他的接口,我们可以来看看整套人脸识别具体有什么功能,我们可以怎么在实际应用中去进行应用呢?
大家好,我是马琦钧,Datawhale成员,毕业于浙江农林大学,统计学/会计学双学位,获得过由阿里云、谷歌、百度、CVPR、思否、极棒等举办的相关赛事奖项。
6月29日,音视频及融合通信技术技术沙龙圆满落幕。本期沙龙特邀请腾讯云技术专家分享关于最新的低延迟技术、全新的商业直播方案等话题,针对腾讯云音视频及融合通信产品的技术全面剖析,为大家带来纯干货的技术分享。下面是孙祥学老师关于AI技术在视频智能识别和分析中的应用,以及实际落地过程中遇到的挑战以及解决办法的分享。
4 月 7 日,来自清华的 RealAI(瑞莱智慧)发布了 RealSafe 人工智能安全平台,随之推出的测试结果令人惊讶:通过平台对微软、亚马逊云服务的人脸比对演示平台进行测试显示,基于 RealSafe 平台生成的对抗样本「噪音」能够极大干扰两大主流人脸比对平台的识别结果。
在金融、社交媒体、安全监控等多个领域,图像内容的审核和风险控制变得日益重要。视觉风控技术,作为人工智能领域的一项重要应用,正在帮助企业和组织提高其风险管理的效率和准确性。本文将探讨视觉风控技术能做哪些工作,以及这些工作如何用于风控。
在角色扮演游戏(RPG)中,如现代经典犯罪游戏侠盗猎车手,许多玩家是根据自己的形象来塑造游戏中的角色。但是现在的内置字符定制系统越来越复杂,它们可能需要手动调整数十个甚至数百个参数,要花费几个小时才能完成。
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
视觉 AI 作为一个已经发展成熟的技术领域,具有丰富的应用场景和商业化价值,全球 40% 的 AI 企业都集中在视觉 AI 领域。近年来,视觉 AI 除了在智能手机、智能汽车、智慧安防等典型行业中发挥重要作用外,更全面渗入细分的实体行业,催生了如车站人脸实名认证、人脸支付、小区人脸门禁管理、酒店自助人脸实名登记等视觉 AI 的应用。
GTA 新出的游戏预告片看了吗?据说,这个预告片已经破了三项吉尼斯世界纪录,观看次数已经破亿。
"RequestURL":"http://192.168.1.133:10003/VIID/Persons",
继神经网络推理框架 ncnn、TNN,动作检测算法 DBG,通用目标检测算法 OSD,人脸检测算法 DSFD、人脸属性算法 FAN等众多优秀的框架、算法开源后,腾讯优图实验室又有一项人脸识别算法研究项目——TFace正式拥抱开源啦!
部分来源于《机器人大讲堂》和《2017年中国人脸识别未来发展路径、市场需求、市场发展空间预测》 近年来由于深度学习爆炸式的发展,已经带动了整个行业的发展。身为人工智能的一份子,为该技术骄傲自豪。在丰
支持使用SDXL模型和一定的选项直接生成高清大图,不再需要上传模板,需要16GB显存
首先祝大家七夕情人节愉快,能和喜欢的人度过浪漫的一天,也祝在科研的同学抽出时间陪伴你的伴侣,一起度过一年一次的中国情人节,若还处于单身的同学,希望你们不仅科研成功、还能遇到自己喜欢的他(她)!
继神经网络推理框架 ncnn、TNN,动作检测算法 DBG,通用目标检测算法 OSD,人脸检测算法 DSFD、人脸属性算法 FAN等众多优秀的框架、算法开源后,腾讯优图实验室又有一项人脸识别算法研究项目——TFace正式拥抱开源啦! TFace开源地址: https://github.com/Tencent/TFace 项目背景 TFace是由腾讯优图实验室研发的人脸识别算法研究项目,其中TFace中的T意为“trusty”,表达了团队在可信人脸识别技术方向上的愿景。 人脸识别算法是指在检测到人脸
首先,我们需要一种在图像中查找人脸的方法。我们可以使用一种称为MTCNN(多任务级联卷积网络)的端到端方法。
「 对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》」
肖战发型适配教程来啦!说到肖战,让人不得不想到他可盐可甜的颜值,肖战的《陈情令》使得他爆红了一把,也有不少人因此成为了肖战的迷妹。的确,从外形上看的话,也算是实打实的帅哥了;那么,长得这么帅,有没有什么秘诀呢?很多人不知道看似随随便便站在那就很吸睛的肖战,不同的发型又给人完全不同的感觉。 今天之后你就不用再去找 老师设计发型了,本篇博文就教你基于 “ 换脸技术” 换肖战几款他常见的发型,快来看看你最适合哪一款叭~~~ 目录 1 导入库 2 从图像中找人脸 3 换脸 4 运行结
对每个人而言,真正的职责只有一个:找到自我。然后在心中坚守其一生,全心全意,永不停息。所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》
6月初北京的疫情响应已经降到了三级,没想到中旬时疫情又卷土重来,每天都有10~30个确诊病例的新增,按专家的说法秋冬季还会更严重。公司之前一直使用基于指纹的上下班签到机制,疫情期间为了减少人员接触开始改用人脸打卡。当时以为只是应急用一下,疫情有一两个月就结束了,使用的第三方的人脸打卡程序。但目前已经过去5个月了,疫情还没有结束的迹象。继续使用第三方的打卡程序:一是数据不安全人脸&位置数据全被第三方收集走了,另一方面第三方没有提供接口无法和公司现有的考勤程序进行数据对接。公司希望实现自己的基于人脸打卡程序,这个重任当然就落到了我们开发部上,虽然没经验但咱们做为一个涉身职场多年的老将不能说不行啊。
一、功能特点 支持的功能包括人脸识别、人脸比对、人脸搜索、活体检测等。 在线版还支持身份证、驾驶证、行驶证、银行卡等识别。 在线版的协议支持百度、旷视,离线版的支持百度,可定制。 除了支持X86架构,还支持嵌入式linux比如contex-A9、树莓派等。 每个功能的执行除了返回结果还返回执行用时时间。 多线程处理,通过type控制当前处理类型。 支持单张图片检索相似度最高的图片。 支持指定目录图片用来生成人脸特征值文件。 可设置等待处理图片队列中的数量。 每次执行都有成功或者失败的信号返回。 人脸搜索的返
2、opencv使用人脸识别过程中,需要引入haarcascade_frontalface_alt2.xml文件,如果放在项目的lib文件中,在打包的过程中能够打到包里,但是在动态引用的过程中,由于jar包中文件的引用出现混乱路径的情况,找不到文件。找到一个折中的办法,haarcascade_frontalface_alt2.xml文件放到固定目录下,再引用的时候,只需要读取固定的路径即可。
我这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值。 它的结构如下图所示: 1 Input Imag
这里简单讲下OpenFace中实现人脸识别的pipeline,这个pipeline可以看做是使用深度卷积网络处理人脸问题的一个基本框架,很有学习价值,它的结构如下图所示:
OpenCV这么简单为啥不学——1.12、使用ssim函数对两张照片进行相似度分析
---- 新智元报道 编辑:桃子 如願 【新智元导读】自人脸识别问世以来,饱受争议,现今,微软宣布淘汰这项可以识别情绪的面部识别工具。 今天,微软暂停提供能识别情绪的AI。 这不是好事吗? AI识别情绪还真的不太稳定,没准儿就会人工智障... 就比如近日网上流传的这张图,董宇辉和韦神的眼神对比。 AI可以识别出「希望」和「力量」吗? 还真不好说... 微软:我关了 就在今天,微软宣布,逐步停止向公众提供基于AI进行面部分析的工具。 其中就包括可以从视频和图片中识别对象情绪的AI。 与此同时,
本系列是《玩转机器学习教程》一个整理的视频笔记。本章的最后一个小节介绍PCA在人脸识别领域的一个特殊的应用,也就是所谓的特征脸。本小节会介绍什么是特征脸,并通过可视化的方式直观的感受特征脸。
随着深度学习带来 AI 的第三次浪潮,对 AI 的相关讨论层出不穷,算法是大家关注的重点。
2月13日,百度宣布免费开源业内首个口罩人脸检测及分类模型。该模型可以有效检测在密集人流区域中携带和未携戴口罩的所有人脸,同时判断该者是否佩戴口罩。目前已通过飞桨PaddleHub开源出来,广大开发者用几行代码即可快速上手,免费调用。
基于2-channel network的图片相似度判别 原文地址:http://blog.csdn.net/hjimce/article/details/50098483 作者:hjimce 一、相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:《Learning to Compare Image Patches via Convolutional Neural Networks》,本篇文章对经典的算法Siamese Networks 做了改进。学习这篇pape
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对2015 中这个列表的修正与完善,移除了部分被废弃的 API ;我们也添加了最近由 IBM、Google、Microsoft 这些大厂发布的 API 。所有的 API 可以根据应用场景进行分组: 人脸与图片识别。 文本分析,自然语言处理以及情感分析。 语言翻译。 预测以及其他的机器学习算法。 在具体的每个分组内,我们根据首字母顺序排序;
人脸识别是目前应用较广泛的AI产品服务,但在售前接触客户中,发现很多销售同学和客户对于人脸识别的认识不够全面,从而在使用和计价过程中遇到较多的问题,所以通过这篇博客个人总结一些应用架构实践,帮助大家理解“人脸识别”的应用;
本文共两个部分,这是第一部分,其中介绍了 ASP.NET Core 3 中旨在将授权逻辑与基本的用户角色相分离的基于策略的授权模型。此部分提供了此授权进程的基于生物识别信息(如人脸识别或语音识别)的具体示例。在此示例中,检测到未经授权的入侵时,将限制进入建筑。Azure 机器学习内置的异常检测服务将评估入侵的严重性。
【新智元导读】 将模糊图像变高清的技术很受关注,不过同样应用范围很广的视频自动打码技术似乎比较低调。微软研究院最新提出一套基于人工智能算法的视频人脸模糊解决方案,该技术包含人脸的检测、跟踪、识别三类算法,能够实现对视频进行自动人脸模糊。该系统已经搭载于微软Azure云平台上作为一项云服务提供。 新闻无处不在。从电视里的《新闻联播》、《新闻30分》,到手机中的《今日头条》、《腾讯新闻》,随着互联网的不断发展,新闻报道的数量,以及报道中的视频数量,都在不断增加。 这对读者来说也许是好事,意味着有更多、更丰富的内
本文将详细介绍向量数据库这一创新性的数据库技术。我们将从多个角度、多个方向和多个思维角度分析和解释向量数据库的概念、原理和应用。向量数据库以向量为基本数据类型,具有高度可扩展性和高效的相似性搜索能力,被广泛应用于人脸识别、推荐系统、自然语言处理和图像检索等领域。
在这一新研究中,科学家们只需用普通打印机打出一张带有图案的纸条贴在脑门上,就能让目前业内性能领先的公开 Face ID 系统识别出错,这是首次有 AI 算法可以在现实世界中实现攻击:
上一篇文章写了在线调用人脸识别api进行处理,其实很多的客户需求是要求离线使用的,尤其是一些事业单位,严禁这些刷脸数据外泄上传到服务器,尽管各个厂家号称严格保密这些数据,但要阻止这些担心,唯一的解决办法就是设备离线使用,连个屁的网,不联网看你怎么上传,于是离线的人脸识别应用应运而生,比如我们手机上的识别就是本地库在运算,至于本地模型库估计会联网更新,以保持最新的状态。百度的离线人脸识别做的还行,看官网的sdk开发包,更新也是蛮快的,提供了windows、linux、android等版本。
随着数字化时代的迅猛发展,个人信息的安全性和隐私保护成为了当今社会中备受关注的话题。在这个背景下,实人认证API崭露头角,成为数字领域中的一项重要技术,为身份验证提供了全新的保障机制。本文将探讨实人认证API在身份验证中的角色,以及它在保护个人隐私和安全性方面的重要作用。
前段时间,JD搞了个猪脸识别的比赛,大家都看得沸沸扬扬,但是这个其实是一个很不错的AI+畜牧业的应用,比如在养牛行业。大家知道吗?牛其实不愿意看到人类的,他们会视人类为捕食者,因此养牛场的工作人员会给
因疫情影响 CVPR 2020 将于6月14日-19日 线上会议,今天官方终于放出了所有的论文列表,并开放下载。
关于人脸识别这块,前些年不要太火,哪怕是到了今天依然火的一塌糊涂,什么玩意都要跟人脸识别搭个边,这东西应该只是人工智能的一个很小的部分,人脸识别光从字面上理解就是识别出人脸区域,其实背后真正的处理是拿到人脸区域图片,提取人脸特征值,再用这些特征值去做比对分析处理,识别出到底是谁,国内厂家也不少,比拼的就是准确度误报率,速度无非就是靠堆硬件来,什么VPU各种并行运算都堆上去,速度杠杠的,好多厂家都做到了几个毫秒的级别,估计很多厂家都是在开源的基础上加上了自家的算法,一直跑呀跑的整出了符合自家算法的人脸模型文件,比如百度的人脸识别模型文件,经过好几年的发展,越来越大越来越细越来越准。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
本文介绍了人脸对齐领域的一种算法——主动形状模型(ASM),它是一种基于点分布模型(PDM)的算法,通过全局和局部的形状约束条件,利用最小二乘法拟合出人脸形状,同时介绍了ASM的流程和具体实现细节。
在人脸识别到以后,需要在实时视频上将所有人脸框绘制出来,一把来说识别人脸会有多种选择,一个是识别最大人脸,这种场景主要用于刷脸门禁,还有一种是识别所有人脸,这种场景主要用于人脸识别摄像机,就是将画面中的所有人脸识别出来发给服务器,人脸框的数据主要是四个参数,左上角和右下角的位置,也可以说是x、y、width、height,可能有些做的比较好的还有倾斜角度,这个意义不是很大,人脸识别的速度一般都是飞快的,就算你用学习上用的opencv做识别也是非常快的,基本上都是毫秒级的响应,主要的耗时操作在特征值的提取,所以一般要求能够响应每个通道每秒钟25帧-30帧的画面绘制+人脸框的绘制,当然人脸框的数据可能会有多个。
在上周发布的《一文看懂预训练最新进展》中,澜舟科技创始人兼 CEO 周明和澜舟科技大模型技术负责人王宇龙分享了大模型技术发展背景和近期百花齐放的大模型及新应用、新趋势。本文继续为大家深入介绍“大模型轻量化”趋势以及澜舟的 5 个实践路径。
领取专属 10元无门槛券
手把手带您无忧上云