WordPress 默认是自动从中间裁图来生成缩略图,如果图片中的人脸在边上的时候,就会把图片中最重要的部分裁掉,如果全身照则更尴尬,有时裁剪之后剩下的是脖子和手臂。My Eyes Are Up Here(我的眼睛在这里 🙂 ) 这个插件就是为了解决这个问题的,它通过整合一个可以侦测图片中人脸的 jQuery 插件来实现的。 插件安装之后,无需设置,在图片编辑选项旁边会有“face detection”(脸部侦测)的区域,插件内置的脸部侦测有两种方法:自动侦测和通过指定热点来人工侦测。 自动人脸侦测是非
迫不及待想体验,戳链接:https://wj.qq.com/s2/3986990/e0ef/
在做数字人时,需要对采集的数据进行预处理,然后才能进行模型训练, 预处理常用的操作有:去背景 音频重采样 视频裁剪 音频特征提取等等,今天我们来分享一个自动化脚本: 对原图/视频进行人脸检测并根据目标尺寸以人脸为中心进行裁剪.
什么是万象优图 万象优图是腾讯云为开发者提供图片智能鉴黄、图片内容识别、人脸识别、OCR识别等服务;也可以根据需求提供定制化的图片识别服务;同时也提供灵活的图像编辑服务,如裁剪、压缩,水印等,满足您的
对于这个需求,大家的第一反应可能是 PS,但 PS 用来干这件事情我觉得太“重”了,有没有更轻便的办法来实现呢?
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
不想去照相馆?担心肖像隐私被第三方获取?不会抠图?本文实现基于人工智能的一键自动抠图生成证件照。在进入正文之前,先看最终效果:
AI 科技评论按:本文作者郭瑞娥,首发于中科院自动化所「智能感知与计算研究中心」微信公众号,AI 科技评论获授权转载。 CVPR 是计算机视觉、模式识别和人工智能领域国际顶级会议,2018 年 6 月 18-22 日将在美国盐湖城召开,届时 AI 科技评论也会在现场带来一线报道。 不论你是论文录用作者,还是即将参会的企业机构,欢迎联系 AI 科技评论小编(微信号:aitechreview)报道/合作哟。 智能感知与计算研究中心为中科院自动化所独立建制的科研部门,致力于研究泛在智能感知理论与技术以及与之相伴的
向AI转型的程序员都关注了这个号👇👇👇 设计构思与创意 本作品以微信小程序为“个人”平台,用户可在微信小程序中录入必要的人脸等个人信息,并且能够以微信小程序为窗口查询自己的垃圾分类详情。为保证微信小程序的丰富性和人性化,用户可在小程序中通过拍照、语音、搜索等查询日常生活中常遇的生活垃圾,积累自己垃圾分类知识。在垃圾桶端,系统在用户授权情况下通过拍摄用户人脸信息匹配用户个人数据库,并记录其垃圾分类信息。此外,垃圾桶在本作品中充当“引导者”角色,用以引导用户将垃圾投掷到正确的垃圾桶中。在管理端,相关部门一方
有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。
如果上班的时候想放松一下,或者直说想偷偷懒,看点和工作无关的网页,这时候万一老板突然出现在背后,会不会感到很难堪呢? 有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。 一个日本程序员决定自己动手,编写一个一劳永逸的办法,我们来看看他是怎么实现的吧~ 思路很直接:用网络摄像头自动识别在工位通道走过的人脸,如果确认是老板的话,就用一张写满了代码的截图覆盖到整个屏幕上。 整个工程中应用了Keras深度学习框架来建立识别人脸的神经网络,和一个网络摄像头用来捕捉老板的
如果上班的时候想放松一下,或者直说想偷偷懒,看点和工作无关的网页,这时候万一老板突然出现在背后,会不会感到很难堪呢? 有的浏览器设置了boss按键,手快的人还可以切换屏幕,不过总会显得不自然,而且经常搞的手忙脚乱的。 一个日本程序员决定自己动手,编写一个一劳永逸的办法,我们来看看他是怎么实现的吧~ 思路很直接:用网络摄像头自动识别在工位通道走过的人脸,如果确认是老板的话,就用一张写满了代码的截图覆盖到整个屏幕上。 整个工程中应用了Keras深度学习框架来建立识别人脸的神经网络,和一个网络摄像头用来捕捉
云开发CloudBase是云开发团队为开发者提供的一站式云服务,旨在降低开发者使用云服务的门槛,助力开发者快速开发应用。 在具体的开发过程中,云开发提供了许多实用的扩展能力,包含图像标签、图像安全审核、图像处理、图片盲水印等。本文就以人脸识别小程序为例介绍一些云开发扩展能力的应用。 使用方法简述 完整文档见: https://docs.cloudbase.net/extension/introduce.html 1、打开 云开发扩展控制台; 2、选择希望安装的扩展; 3、单击【安装】,进行扩
我们很高兴展示借助 TensorFlow Lite 在 Raspberry Pi 上构建 Smart Photo Booth 应用的经验(我们尚未开放源代码)。该应用可以捕捉笑脸并自动进行记录。此外,您还可以使用语音命令进行交互。简而言之,借助 Tensorflow Lite 框架,我们构建出可实时轻松处理笑脸检测和识别语音命令的应用。
采用 Taro 跨端框架,采用腾讯云源开发模式,采用基于腾讯云的五官分析的人脸识别,实现了自动为头像戴上口罩的功能。
短视频SDK、直播SDK接入,超低占用空间,十秒大型场景仅100KB+ 精准人脸识别,动态捕捉最优人脸画面 无限炫酷特效,支持Android、IOS系统。
导语 一个帖子在用户点进去观看之前,能被用户捕捉到的信息只有封面缩略图、标题、作者等少量信息,这些因素直接决定了用户是否愿意点击该帖。一个好的封面能明显提高用户的点击欲,而对于不少UGC内容的帖子,用户也不会去指定封面,这时智能提取封面就显得尤为重要。 对于资讯类App,从文章的配图中选择1-3张图片并裁剪出适合区域作为封面,是一种很常见的场景。这里会涉及到两个问题:如何从多张图片中选择质量较高的前几张图作为封面?挑选出来的图片宽高比可能与封面要求的比例不符,如何从图中裁剪出适合的区域呈现给用户? 本
我们运用Python 3.8.1版本,爬取网络数据,基于卷积神经网络(CNN)的图像处理原理,搭建口罩识别技术训练集,构建人脸识别系统,最终建立高校师生行踪查询管理系统。
欢迎关注“ 计算机视觉研究院 ” 计算机视觉研究院专栏 作者:Edison_G 数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。 长按扫描二维码关注我们 一、前言&简要 为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我
机器之心投稿 作者:余霆嵩 为了能在移动端进行实时的人脸关键点检测,本实验采用最新的轻量化模型——MobileNet-V2 作为基础模型,在 CelebA 数据上,进行两级的级联 MobileNet-V2 实现人脸关键点检测。首先,将 CelebA 数据作为第一级 MobileNet-V2 的输入,经第一级 MobileNet-V2 得到粗略的关键点位置;然后,依据第一级 MobileNet-V2 的输出,采取一定的裁剪策略,将人脸区域从原始数据上裁剪出来作为第二级 MobileNet-V2 的输入;最后,
真实场景下的表情识别一直是令众多研究者十分头疼的课题。这个任务中,尤为令人抓狂的是表情数据集中普遍存在着许多坏的数据(例如被遮挡的人脸,错误的标签或者是模糊不清的图像)。这些数据不仅使得模型难以拟合,还严重拉低了最后的精度。在今年的 CVPR 中,我们惊喜的发现了一篇专门解决这个问题的论文,这篇论文有效的抑制了那些不确定性的数据,并且防止了深度模型对这些坏数据的过拟合。顺藤摸瓜,我们也找到了在 2019 年的 IEEE transactions on image processing 上两篇能有效处理遮挡表情和姿势变化的论文。本篇提前看重点关注 CVPR 2020 中的这篇「Suppressing Uncertainties for Large-Scale Facial Expression Recognition」, 但在解读它之前,我们先有步骤的解读两篇 TIP 作为它的基础,最后详细介绍它的算法和思想。对比性的解读这三篇论文,也许能对研究者们自己的工作有所启发。
该论文是出自于CVPR2022关于GAN的最新文章。要知道虽然目前GAN可以在某些领域的理想条件下能够生成逼真的图像,但由于发型、服装和姿势的多样性,生成全身人体图像仍然很困难,之前的方法一般是用单个GAN对这个复杂域进行建模。
和上次不同,这次大屏幕侠识别现场观众的表情,将笑容热力值排名,pick前10位笑容灿烂的小伙伴上榜
这篇有关人脸识别/分析的论文拿下了2024 IEEE CIS TETCI优秀论文奖。
说起这个人脸识别,还真有点缘分。记得逆天以前在学生时代参加创新大赛的时候,题目就是人脸识别打卡 解决别人替人打卡的问题,想想看,要是用微软的faceapi那还不是很容易实现的? 好了,不扯淡了,上次概
丰色 发自 凹非寺 量子位 | 公众号 QbitAI 见过用GAN来P图,见过用GANP视频吗? 瞧,原本一直在面无表情地讲话的人,全程露出了微笑;原本得4、50岁的人,直接变20几岁了: 另一边,正在微笑唱歌的“赫敏”一下子愤怒起来,还能换上一张几岁小孩的脸: 奥巴马也如此,4种版本的面部状态信手拈来,甚至连性别都给P成女的了: 不管人脸表情和状态如何变化,这些视频都没有给人任何违和感,全程如此的丝滑~ 哦对,除了真人,动漫视频里的脸也可以P: 有点厉害了。 基于GAN的视频面部编辑 这个模型出自
大家好,有三本月出版了《深度学习之摄影图像处理:核心算法与案例精萃》,这是一本系统性讲述计算摄影核心算法的书籍,同时配套有大量实战案例。
AI 写代码想必很多人都体验过了,使用 AI 编程工具是一个大趋势,越早学会使用 AI 辅助你写代码,你的效率也会越高。
因为手机平板等各种终端设备层出不穷,制作人拍个视频还要剪裁成各种尺寸,以便分发到各种渠道。然而,如果要聚焦于核心内容,那么能追踪主体,并剪裁视频长宽尺寸的能力就必不可少了。
选自GitHub 机器之心编译 参与:panda 深度神经网络模型对计算资源的需求问题一直是相关研究和应用的关注焦点之一。研究者们一直在努力试图将神经网络模型部署到移动设备上,有硬件方法也有软件方法,比如《前沿 | 借助神经网络芯片,将大型人工智能系统塞入移动设备》和《业界 | 谷歌开源高效的移动端视觉识别模型:MobileNet》。在去年的 AAAI 人工智能大会上,香港中文大学的研究者则提出了一种通过压缩模型来实现这一目标的方法 MobileID。近日,研究者开源了这项研究的代码。机器之心对该项目及原论
比如说,https://thispersondoesnotexist.com/,在这上每刷新一次都会生成一幅让你真假难辨的人脸。
与许多产业一样,通过软件和算法辅助,电视与视频制作很可能被人工智能和机器学习所改造,而当前这些制作任务都是由人来执行。随着现场直播报道涉及的范围越来越广,而相关专业人士的数量稀缺,基于AI的影视制作技术应运而生。本文参考IBC2018荷兰广播电视展览会上最佳技术论文(AI in production: video analysis and machine learning for expanded live events coverage, Craig Wright et. al),该论文由BBC R&D完成,讨论了一个名为“Ed”的项目,以求用最少的工作人员创建近乎实时的内容。其中的一个例子是,“Ed”利用一组三架无人4K相机,生成了许多正确构图的高清图像,并可从中剪接。
https://github.com/davidsandberg/facenet
多重曝光是一种拍摄技法,不过为了烘托气氛,常常选择这种技法,多重曝光技术一般用来拍摄双影或多影照片。可以拍摄出魔术般无中生有的效果,这也正是它的独具魅力之处,所以才吸引了很多人使用这种技法。
各位宝友大家好,今天给大家带来了 smartcrop.js ,它是什么呢?通过名字我们大概能猜出来就是智能裁剪。我用我拙劣的东北英语大概翻译了下:Smartcrop.js 实现了一种算法来为图像找到好的裁剪。它提供了三种使用方式分别是 浏览器中、node、 和CLI 。
作者:小潘师兄 来源:AI算法与图像处理 简介 在本文中,我们从不同的角度将妆容迁移问题分解为两步提取-分配过程。为此,我们提出了一种基于风格的可控GAN模型,该模型由三个部分组成,每个部分分别对应于目标风格编码、人脸特征提取和化妆融合。具体地,特定于部件的样式编码器将参考图像的组件式构图样式编码为中间潜在空间W中的样式代码。样式代码丢弃空间信息,因此对空间错位保持不变。另一方面,样式码嵌入了组件信息,使得能够从多个参考中灵活地进行部分补码编辑,该样式码与源标识特征一起集成到一个具有多个AdaIN层的补码融
数据增强(DA)是训练最先进的深度学习系统的必要技术。在今天分享中,实证地表明数据增强可能会引入噪声增强的例子,从而在推理过程中损害非增强数据的性能。
为了缓解上述问题,有研究者提出了一种简单而高效的方法,称为保持增强(KeepAugment),以提高增强图像的保真度。其主要思想是首先使用显著性map来检测原始图像上的重要区域,然后在增强过程中保留这些信息区域。这种信息保护策略使我们能够生成更忠实的训练示例。
随着人工智能的高速发展,基于计算机视觉技术研究及应用也逐渐进入成熟阶段。其中,人脸识别是运用较多的一种技术,已经渗透到人类日常生活的方方面面。
先展示一下我的结果。我们测试的图片当然是当前最热的 nihongo 电视剧『轮到你了』的 CP 二阶堂和黑岛了
基础模型是现代视觉识别系统中一个至关重要的关注点。基础模型的优劣主要从精度、速度或功耗等角度判定,如何设计模型应对复杂应用场景是非常重要的课题。
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G ---- 给 Crop-CLIP 一个口令,就能自动搜图,还能帮忙裁剪出图片中的关键部分。 ---- 转自《机器之心》经常找图的人都知道,根据检索关键词组寻找理想中的照片是件很麻烦的事情。 打开搜索引擎或无版权图片网站,输入关键词,如果幸运的话,可能会在第一页或前 N 个检索结果中找到想要的图像。这种搜索方式仍然是基于图片标签进行的。
大家好,今天是周日,周日不休息, 今天给大家分享一个 CVPR 2021 的最新工作,关于妆容迁移的。挺好玩的,下面我会简单介绍论文,并带大家手把手跑一下demo。如果有用,大家帮忙点个在看,分享朋友圈鼓励一下,谢谢啦。
哪一个人脸识别 API 是最好的?让我们看看亚马逊的 Rekognition、谷歌云 Vision API、IBM 沃森 Visual Recognition 和 微软 Face API。
但现在,RealAI团队有了一个办法,只需一副定制的“眼镜”,就可以秒秒钟破解手机的面部识别系统。
PHP全球开发者大会是DevLink每年一度的,特别针对PHP开发者的专题活动。每次活动均会请到该领域内的资深开发者、技术专家来分享具体、有针对性、具操作性的内容。每次观众规模约700人,会议时间在2天左右。
WidsMobAIRetoucher是Mac上的一款智能AI修图软件,拥有编辑,美化,降噪,色彩过滤等多种功能,可以自动而轻松的编辑照片,为客户减轻工作强度,并提高编辑质量。
领取专属 10元无门槛券
手把手带您无忧上云