人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富, 应用市场潜力巨大。然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用。因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。
人脸识别成了近年火热的人工智能落地方向之一。简单地看来,人脸识别是一个验证身份的过程,所以后跟个人身份证打通也是理所应当。要判断画面上呈现的是不是一个真的人脸,途径和手段是可以非常多样化的。要验证是不是真正的人脸,光靠一个二维的模式识别,或者人脸特征点的对齐都是远远不够的,存在一定的局限性。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
们生存的这个星球上,居住着70多亿人。每个人的面孔组成部分相同,它们之间的大体位置关系也是固定的,并且每张脸的大小差异也不大。然而,它们居然就形成了那么复杂的模式——即使是面容极其相似的双胞胎,也能由微妙的差别区分出来。人脸特征如同指纹一样,无法找到完全相同的存在。那么,区分如此众多的不同人脸的“特征”到底是什么?是否可以设计出与人类一样能够自动识别人脸的机器?这是近几十年来被广泛研究着的热门问题。随着AI技术的发展,也取得了显著的突破。
如今,人脸识别已经走进了我们生活中的方方面面,拿起手机扫脸付账,扫描人脸完成考勤,刷脸入住酒店纷纷便利了我们的生活。而人脸识别里一项必不可少的技术就是人脸活体检测,即AI不但要确定这是“你”,还需要确定这是“真实存在的、活的你”。
目前已经有了越来越多的基于人脸识别的应用,例如我们现在应用极广的“刷脸支付”、“刷脸打卡”等。但随着技术的发展,当年很多电影中的画面慢慢变成了现实,坏人可以通过带上提前准备好的照片或者面具,甚至是一副眼镜,轻而易举的被识别成其他人,随着这种人脸伪造的风险和隐患逐日增加,人脸活体检测技术得到了越来越多的关注。
起步阶段(1950s-1980s),这一阶段的人脸识别只是作为一般性的模式识别问题来研究,所采用的技术方案也是基于人脸几何结构特征的方法。
本文为人脸识别算法系列专题的综述文章,人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,文中我们将为大家总结近些年出现的具有代表性的人脸识别算法。请大家关注SIGAI公众号,我们会持续解析当下主流的人脸识别算法以及业内最新的进展。
每周精选 Algorithm System Anti-Spoofing 之人脸活体检测 在小编之前的文章系列中曾介绍过的对抗样本攻击,是目前Deep Learning比较火热的一个研究方向,因为它掀起了关注深度学习在安全领域潜在问题的热潮。虽然活跃于学术界的对抗样本目前还未渗入到工业界中,anti-spoofing(反欺诈)仍一直是大家关注的焦点。人脸识别是大家最为熟悉的应用深度学习的例子,结合人脸识别技术的APP在市面上比比皆是,本文将简单介绍在人脸识别应用中的反欺诈技术——人脸活体检测。 人脸识别,
近期,图普科技在国际权威海量人脸识别数据库MegaFace中,以99.087%的最新成绩在百万级别人脸识别测试中拔得头筹,参加这项测试的还有来自Google、微软中国、百度、腾讯等公司的AI团队。 数
1、简介 尽管深度人脸识别从大规模训练数据显著受益,但目前的瓶颈是标签成本。解决这个问题的一个可行的解决方案是半监督学习,利用一小部分的标记数据和大量的未标记数据。然而,主要的挑战是通过自动标签累积的标签错误,损害了培训。在本文中,我们提出了一个有效的对半监督人脸识别具有鲁棒性的解决方案。具体地说,我们引入了一种名为GroupNet(GN)的多代理方法,以赋予我们的解决方案识别错误标记的样本和保存干净样本的能力。我们表明,即使有噪声的标签占据了超过50%的训练数据,仅GN在传统的监督人脸识别中也达到了领先的精度。进一步,我们开发了一种半监督人脸识别解决方案,名为噪声鲁棒学习标签(NRoLL),它是基于GN提供的鲁棒训练能力。它从少量的标签数据开始,因此对一个lar进行高可信度的标签 索引术语-半监督的人脸识别,有噪声的标签学习。
一个成熟的人脸识别系统通常由人脸检测、人脸最优照片选取、人脸对齐、特征提取、特征比对几个模块组成。
AI 科技评论按:近期,图普科技在国际权威海量人脸识别数据库 MegaFace 中,以 99.087% 的最新成绩在百万级别人脸识别测试中拔得头筹,参加这项测试的还有来自 Google、微软中国、百度、腾讯等公司的 AI 团队。
人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。目前已应用在金融、教育、景区、旅运、社保等领域,但方便的同时也带来了一些问题,易获取,使得人脸容易被一些人用照片、视频等方式进行复制,从而达到窃取盗用信息的目的。为了保障信息安全,人脸识别技术责无旁贷,而抗攻击,是其研究中必不可少的一环,其中,人脸活体检测就是技术的核心了。
雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑
不过只能区分出是不是人脸,至于是A还是B就不清楚了。要识别具体的人,那么就需要先让程序看看我们长什么样,记住后然后再让程序区分,这样就可以做到了。
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
在生物识别系统中,为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有活体检测功能,即判断提交的生物特征是否来自有生命的个体。一般生物特征的活体检测技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息,人脸活体检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
这是发生在2019年的事情,被错误逮捕的对象,是一位名叫Robert Williams的黑人男子,在交了1000美元后,他才被保释出去。
*理论联系实际,记录下读《Deep Face Recognition: A Survey》的心得体会
二十四、开集识别 68、OpenGAN: Open-Set Recognition via Open Data Generation 实际应用中,机器学习系统需要分析与训练数据不同的测试数据。在 K-way 分类中,这也被表述为开集识别,其核心是区分 K 个闭集类之外的开集数据的能力。 开放集识别的两个概念上优雅的想法是:1)通过利用一些异常数据作为开放集来学习开集与闭集的二分类判别器,以及 2)使用 GAN 无监督学习闭集数据分布。由于对异常数据的过度拟合,对各种开放测试数据的泛化能力很差,这些异常值不太
自七十年代以来,人脸识别已经成为了计算机视觉和生物识别领域研究最多的主题之一。近年来,传统的人脸识别方法已经被基于卷积神经网络(CNN)的深度学习方法代替。目前,人脸识别技术广泛应用于安防、商业、金融、智慧自助终端、娱乐等各个领域。而在行业应用强烈需求的推动下,动漫媒体越来越受到关注,动漫人物的人脸识别也成为一个新的研究领域。
很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。
本文来自CSDN博客专家 ID:xingchenbingbuyu 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实
说到人工智能(Artificial Intelligence, AI)人们总是很容易和全知、全能这样的词联系起来。大量关于AI的科幻电影更给人工智能蒙上一层神秘的色彩。强如《黑客帝国》、《机械公敌》中的AI要翻身做主人统治全人类。稍弱点的《机械姬》里EVA懂得利用美貌欺骗中二程序员,杀死主人逃出升天。最不济也可以蠢萌蠢萌的像WALL·E能陪玩、送礼物还能谈个恋爱。 其实人工智能这个词在1956年达特茅斯会议上正式诞生时,目标就是想要让机器的行为看起来像是人所表现出的智能行为一样的“强”人工智能。然而人工智能
本文讲述如何使用基于深度学习的人脸识别技术实现人员识别。首先介绍了基于深度学习的人脸识别技术的基本原理和常用框架,然后详细描述了如何使用Dlib库进行人脸检测和关键点检测,并结合代码进行了详细说明。最后,通过实际测试例子展示了人脸检测和人脸识别的具体实现过程。
人脸识别(Face Recognition),是指对输入的图像或视频,判断其中是否存在人脸,进而依据人脸的面部特征,自动进行身份识别。 其过程可分为人脸检测、人脸特征提取和人脸识别三个阶段。人脸识别是身份认证的重要生物识别技术,也是计算机视觉领域研究最多的课题之一,经过近30年的研究,在受控和均匀的可见光条件下的传统人脸识别得到了很大的发展,目前已广泛应用于军事、金融、公共安全和日常生活等领域。
上个案例中我们讲了如何用PaddlePaddle进行车牌识别的方法,这次的案例中会讲到如何用PaddlePaddl进行人脸识别,在图像识别领域,人脸识别也属于比较常见且成熟的方向了,目前也有很多商业化的工具进行人脸识别。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位或检测、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身
【磐创AI导读】本文是深度学习之视频人脸识别系列的第四篇文章,接着第三篇文章,继续介绍人脸表征相关算法和论文综述。在本系列第一篇文章里我们介绍了人脸识别领域的一些基本概念,分析了深度学习在人脸识别的基本流程,并总结了近年来科研领域的研究进展,最后分析了静态数据与视频动态数据在人脸识别技术上的差异;在第二篇文章中介绍了人脸检测与对齐的相关算法。欢迎大家关注我们的公众号:磐创AI。
我们知道人脸识别在这几年应用相当广泛,人脸考勤,人脸社交,人脸支付,哪里都有这黑科技的影响,特别这几年机器学习流行,使得人脸识别在应用和准确率更是达到了一个较高的水准。
人员的体温测量和人员行动轨迹数据追踪是疫情预防和防控过程中重要的手段。在办公所,随着各个行业恢复工作,人员进出多,而且还要进行上下班考勤。采用人工手持额温枪的方式检测体温,效率慢,而且不便于人员行动轨迹数据追踪。
来源:Python开发 ID:PythonPush 前言 很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。 一点区分 对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检
在日常生活工作中,出现了人脸验证、人脸支付、人脸乘梯、人脸门禁等等常见的应用场景。这说明人脸识别技术已经在门禁安防、金融行业、教育医疗等领域被广泛地应用,人脸识别技术的高速发展与应用同时也出现不少质疑。其中之一就是人脸识别很容易被照片、视频、人脸模型等方式轻易蒙混,并且网络上也传出不少破解方法。针对这些问题,人脸识别技术其实也是进行了升级迭代,当前的人脸识别系统是需要具有人脸活体检测功能的。那么人脸活体检测功能到底是什么呢?
李杉 若朴 发自 凹非寺 量子位 报道 | 公众号 QbitAI 三星的新手机又有点问题…… 刚刚发布的Galaxy S8配备了新的面部识别功能,只要盯着前置摄像头即可解锁手机。外媒的简短测评显示,这项功能的速度甚至超过指纹识别。 燃鹅,很快有用户发现,虽然速度有了,但这项功能并不安全。 根据已经公布的视频演示,只需要一张照片,即可成功骗过Galaxy S8的面部识别。虽然花费的时间略长,但确实有效。 有意思的是,可以用S8拍出的照片欺骗另一台S8手机。 在这段视频发布后,三星发言人在声明中表示:面部识别不
种族偏见是生物特征识别中的一个重要问题,但在人脸识别领域还没有得到深入的研究。在这篇论文中,我们首先提供了一个名为“自然环境下的多种族人脸”(RFW)的数据库。利用该数据库,我们验证了四个商业API和四个当前最先进算法都存在种族偏见。然后,我们进一步提出利用深度无监督域自适应算法来解决种族偏差,并提出了一个深度信息最大化自适应网络(IMAN)。在算法中,我们以白种人作为源域,其他种族作为目标域来缓解这种偏差。这种无监督的方法一方面在域层面减小源域和目标域的全局分布,另一方面在类别层面学习有区分性的目标域特征。此外,我们还提出了一种新的互信息损失,在没有标签的情况下,进一步提高了网络输出的鉴别性。通过在RFW、GBU和IJB-A数据库上进行的大量实验表明,IMAN学习到的特征在不同种族和不同数据库上有很好的泛化性。
更多的时候,它是方便了我们的生活,足不出户,就可以实现各种 APP 的实名认证,信息审核。
AI 科技评论按:有「工业界黄金标准」之称的美国国家标准与技术研究院(National Institute of Standards and Technology,NIST)最近公布了全球人脸识别算法测试(FRVT)结果 FRVT 2018,目前全球工业界最好水平的人脸识别技术,在百万分之一误报下的准确率达到 99.3%,千万分之一误报下的准确率已经接近 99%。
新年伊始,关心国外动态的同学一定清楚,现在全美最关心的可不是什么新冠疫情,而是全国各地到处在发生的各种歧视黑人的种族歧视游行,尤其是不断有白人警察恶意对待黑人群众的新闻爆出,犹如星星之火可以燎原,有愈演愈烈之势。 这不,又有人翻出一起去年发生的案件,但这次被指责的除了白人警察却牵扯上了人脸识别功能。究竟是怎么一回事呢? 案件发生在去年1月,在美国新泽西州伍德布里奇市的一个名为汉普顿的酒店,酒店人员向警方报案,声称有人在酒店礼品店偷了糖果和其他零食。待警方赶到后,嫌疑人提供了一张驾照作为身份证明。 可以清
随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的进步。
本文通过对人脸识别系统的攻击揭示了该系统的脆弱性和漏洞所在,并对人脸识别系统在人类社会中的广泛使用的现状提出了建设性的意见与建议。
视觉 AI 作为一个已经发展成熟的技术领域,具有丰富的应用场景和商业化价值,全球 40% 的 AI 企业都集中在视觉 AI 领域。近年来,视觉 AI 除了在智能手机、智能汽车、智慧安防等典型行业中发挥重要作用外,更全面渗入细分的实体行业,催生了如车站人脸实名认证、人脸支付、小区人脸门禁管理、酒店自助人脸实名登记等视觉 AI 的应用。
【新智元导读】被业界称为人脸识别“世界杯”的微软百万名人识别竞赛 MS-Celeb-1M 冠军团队技术分享。Panasonic-NUS 合作团队认为,竞赛最大的难点是如何在有限的时间内高效地对海量数据(百万级别的类别,千万级别的数量)进行收集、清理和训练,其中数据清洗工作至关重要。美国东北大学 SmileLab 实验室团队表示,实际应用中的人脸识别系统,往往需要用到“分治法”的思想,针对不同的情况进行处理,最后进行融合,往往比使用一个单一的系统要有效、准确、鲁棒。 业界公认的人脸识别“世界杯”——微软百万名
1 月 13 日,在浙江卫视播出的大型科技综艺节目《智造将来》中,代表支付宝最新研发进展的生物识别系统「310099」首次亮相,并成功完成挑战:从 500 位蒙面观众中找到目标人物。
本文转载自机器之心 2016 年,上海交通大学的一篇论文《基于面部图像的自动犯罪概率推断》引起了极大的争议,被贴上了「歧视」的标签。近日,斯坦福大学在《Journal of Personality a
机器之心报道 参与:李亚洲、李泽南 2016 年,上海交通大学的一篇论文《基于面部图像的自动犯罪概率推断》引起了极大的争议,被贴上了「歧视」的标签。近日,斯坦福大学在《Journal of Perso
如何利用机器学习高效地打造人脸识别服务? 人工智能与深度学习 早在几十年前,美国就已诞生了人工智能技术,而机器学习是实现人工智能的其中一种方法。机器学习中还包括表示学习和深度学习两种方法。 深度学习和
领取专属 10元无门槛券
手把手带您无忧上云