首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

BVS未戴安全帽人脸识别抓拍系统

BVS未戴安全帽人脸识别抓拍系统很好地解决了这个难题,对不按要求佩戴安全帽的识别率达到96%以上,还可以对未佩戴安全帽的工人进行人脸抓拍,足以对违规行为形成震慑,为现场工作人员竖起一道安全的防火墙,让施工现场与安全生产联姻...为积极响应国家号召,面对建筑、电力、矿山、石化、工地、冶金等行业施工人员复杂,工程工期紧,作业环境差,施工过程危险源多,作业人员的安全意识偏底等一系列问题,倍特威视推出:   BVS未戴安全帽人脸识别抓拍系统能最大程度保证验证结果的精准度...BVS未戴安全帽人脸识别抓拍系统可以对工人进出是否佩戴安全帽进行管理,还在原有的基础上加上了人脸抓拍功能,不仅可以检测出未佩戴安全帽,还可以对未佩戴安全帽的人进行人脸抓拍,既提高了工作效率,又方便事后查证是谁未佩戴安全帽...BVS未戴安全帽人脸识别抓拍系统在安全生产中起到至关重要的作用。7×24小时检测并督促员工佩戴安全帽,可提高工人的安全意识,减少安全事故发生。

87520
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    视频平台人脸识别比对控制比对时间间隔的代码设计

    当前阶段我们也在积极开发AI人脸检测、人脸识别、车牌识别等项目,将AI智能检测识别与视频处理等技术互相融合、交互,并在线下场景中落地应用。今天和大家分享一个技术干货:如何控制人脸识别比对的时间间隔。...人脸智能分析项目在识别人脸后,随即进行对比、入库。这里需要实现的是摄像头在识别人脸后,控制对比的时间间隔。...在后台打开人脸识别的策略后,就会使用GO协程开启一个定时任务,在后台配置的时间间隔内,定时改变识别的状态,将人脸对比改为true可对比状态,如图:?...而在识别人脸进行对比过后,再将状态改为false,那么下次回调I帧时,通过定时任务,人脸识别状态为true时再次对比。这样就能达到控制人脸识别比对的时间间隔了。?

    1.4K20

    工地车辆未冲洗识别抓拍系统

    工地车辆未冲洗识别抓拍系统主要是对施工工地的出入的车辆进行冲洗监管、冲洗识别、未冲洗告警。工地车辆未冲洗识别抓拍系统 由现场监控摄像头与后台系统构成。...利用前端摄像头正对施工工地进出口对来往车辆实时分析识别清洗情况,将违规未清洗车辆,抓拍报警,并上传到系统后台。近些年,伴随着环境卫生整治规定的不断提升,空气指数日益变成环境监测的关键指标。...工地车辆未冲洗识别抓拍系统,借助工地现场已经安装好的摄像头对进出工地的车辆实时分析识别,将没有冲洗的车辆信息抓拍记录下来,并且识别车牌信息,向监控后台平台发送相关违规车辆信息数据。

    50800

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    18.9K30

    人脸图像识别(python人脸识别技术)

    python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别

    15.3K60

    【CVPR 2018】腾讯AI lab提出深度人脸识别中的大间隔余弦损失

    【论文导读】 深度卷积神经网络(DCNN)在人脸识别中已经取得了巨大的进展,通常的人脸识别的核心任务都包括人脸验证与人脸识别,涉及到特征判别。...针对这个问题,本文设计了一个新的损失函数,我们称之为大间隔余弦损失。 ? Figure 1 图 1:我们提出的 CosFace 框架。...在训练阶段,带有大间隔(large margin)的具有判别性的面部特征是在不同类别之间学习而来的。...核心思想:增强类间差异并且减小类内差异、归一化、增强决策边界 相关内容 深度人脸识别:在DeepFace和DeepID中,人脸识别被看作是一个多类分类问题,首先引入深度CNN模型来学习大型多身份数据集上的特征...在测试阶段,测试人脸对的人脸识别分数通常是根据两个特征向量之间的余弦相似度计算的。

    1.3K50

    渣土车识别监测 渣土车未盖篷布识别抓拍算法

    渣土车识别监测 渣土车未盖篷布识别抓拍算法通过yolov7深度学习训练模型框架,渣土车识别监测 渣土车未盖篷布识别抓拍算法在指定区域内实时监测渣土车的进出状况以及对渣土车未盖篷布违规的抓拍和预警。...渣土车识别监测 渣土车未盖篷布识别抓拍算法的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。...此时,渣土车识别监测 渣土车未盖篷布识别抓拍算法每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。...这可能会增加渣土车识别监测 渣土车未盖篷布识别抓拍算法训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。...渣土车识别监测 渣土车未盖篷布识别抓拍算法 是在 MS COCO 数据集上从头开始训练的,不使用任何其他数据集或预训练权重。

    40510

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸

    12.8K11

    人脸识别demo

    process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): # 将人脸面部信息画出来...'q'): break video_capture.release() cv2.destroyAllWindows() 需要的第三方库 face_recogniton是世界上最简单的人脸识别库了...你可以通过Python引用或者命令行的形式使用它,来管理和识别人脸,该软件包使用dlib中最先进的人脸识别深度学习算法,使得识别准确率在《Labled Faces in the world》测试基准下达到了...99.38%,它同时提供了一个叫face_recognition的命令行工具,以便你可以用命令行对一个文件夹中的图片进行识别操作。...代码部分 效果 识别成功 [在这里插入图片描述] [在这里插入图片描述] 识别失败 [在这里插入图片描述] 完整代码 # -*- coding: utf-8 -*- # @Time : 2019

    10.8K30
    领券