随着物联网技术的发展,物联网被广泛应用于社会生活中,小区安装有车闸、道闸、安防摄像头、门禁等物联网设备,业主在小区的活动会被异构设备捕获,产生的数据被存储于各服务商边端系统,或者被传输到云原生部署的云端IOT系统中,业主在小区活动可能会产生车辆通行记录、人员通行记录,并且业主本身会有业主个人信息、业主房产信息等,由于数据的海量性、多样性特点增加了数据传输和处理的难度,存在数据孤岛问题。其中也往往涉及很多业主个人隐私数据,这些数据可能会在用户不知情的情况下被用于其他服务。
学生在规定的地点范围内进行人脸识别打卡小程序,也可以进行请假,教师在小程序端发布要上的课程以及定位教室和指定范围内可以打卡。同时还展示学生的考勤信息。管理员进行教师学生管理,采集人脸信息,分配课程等。
java实现的企业批量排班系统,出差请假打卡统计,排班,设置部长,发布公告等功能。人脸识别考勤打卡。
最近,亚马逊正式宣布,他们研发的手掌识别技术「Amazon One」正式投入商用。
Java基于springboot开发的大学生寝室管理系统宿舍管理系统。学生可以查找寝室和室友信息,可以申请换寝室,申请维修,寝室长提交考勤信息(宿管确认学生考勤信息),补签,查看寝室通报,宿管信息,查看公告,学生第一次登录需要人脸识别激活账号。宿管人员分配寝室,处理换寝室申请和维修申请,添加寝室卫生表扬等通报,管理公告等。管理员可以管理所有信息包括学院专业班级学生,给不同的用户分配不同的角色等。
上一篇介绍了腾讯人脸识别产品基本功能、使用场景和体验demo等,并详细介绍了接口返回“图片中没有人脸”的原因与解决方案。本篇作为其姊妹篇,将详细探讨接口返回“图片下载错误”的案例情况。
人脸识别以前在小编的记忆中,都是电影的情节,[ 金库!!! 安全大门!!! 收藏地下库!!! ] 扫脸进库 Duang~
今天,也就是 2017 年 9 月 11 日,小米发布了两款手机产品 Note 3 和 MIX 2, 其中,Note 3推出了一项新功能,人脸解锁。 以后,请忘掉密码,忘掉指纹,欢迎走进看脸的时代。 首先,来看看小米 MIX 2 和 Note 3: 小米 Note 3 其实就是大屏版的小米 6,屏幕尺寸升级为 5.5 英寸,处理器则降级为高通骁龙 660 。后置摄像头的配置与小米 6 相同,依旧是 1200 万像素的广角镜头 + 1200 万像素的长焦镜头,前置摄像头则升级到了 1600 万像素,2μm
1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率;
9月 8日下午,顶象产品总监张祖凯就保险代打卡对抗实践展开分享。详细介绍了保险行业的发展背景、行业现状、痛点以及保险行业的风险,进而谈到了保险行业代打卡的三种风险(人脸识别劫持风险、内外勾结获利风险、内控管理风险)以及顶象的防控手段及对抗实战。
2021年1月至今,绿盟科技应急响应团队监测到全国多个省份出现多起仿冒银行系统的短信钓鱼事件,其中钓鱼剧本、攻击手法及钓鱼网站页面均高度相似,可基本确认是同一黑产团伙所为。钓鱼短信称受害者手机银行即将过期或账户被冻结,并附带仿冒的钓鱼网站域名。钓鱼网站与目标手机银行登录界面高度相似,并诱导用户输入身份证号、手机号、手机银行登录密码、短信验证码、交易密码等敏感信息。
AI科技评论按:每次AI领域有重大突破时,甚嚣尘上的“AI威胁论”必然会卷土重来。 2017年10月19日,DeepMind团队重磅发布AlphaGo Zero,再次震惊世人。相比上一代AlphaGo,该版本的AlphaGo实现了在AI发展中非常有意义的一步——”无师自通“,这也让去年败在未升级版本AlphaGo Master下的中国棋手柯洁惊呼”人类太多余了“。 相信看过之前的报道都知道,AlphaGo Zero的先进之处是可以完全从零开始,不需要任何历史棋谱的指引,更不需要参考人类任何的先验知识,完全靠
output:如果图片是对应的K人中的一人,则输出此人ID,否则验证不通过 ,人脸识别比人脸验证更难一些,如果一个人脸验证系统的正确率为99%,即错误率为1%,将这个人脸验证系统应用到另一个人脸识别系统,犯错几率就变为了K倍.即K%
前言:作为一个无任何开发背景的产品经理,我通过一周时间摸索出一个最短开发AI小程序的路径。这里把我的小程序源码,还有需要做的每一步工作都进行了记录和分享。相信你可以按照下面的方式,30分钟完成一个体验版小程序的开发和体验。
【新智元导读】DeepMind迄今最强棋手AlphaGo Zero横空出世,其中一个重要组成部分是出自华人团队的深度残差网络ResNet。新智元采访了深度残差网络ResNet作者之一,旷视科技Face++首席科学家孙剑博士。孙剑认为,AlphaGo Zero技术提升足够伟大,但在真实技术落地过程中还有着众多局限。孙剑分享了他的最新工作——更小更好的神经网络,以及他的人才观。在采访中,孙剑还谈到,人脸识别远远没有被解决,“全世界的视觉研究人员一起来做都不够”。 2017年10月19日,DeepMind团队发表
最近,我用一个以 Go 语言为后端的软件,实现了一个人脸识别项目。它能够识别出上传照片中的人像 (如流行歌手)是谁。这听起来不错,我决定试一下也给你们介绍一下项目的整个过程。
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 本文主要讲解几个部分,(适合一些在读的研究生啥也不会然后接到一些项目无从下手,如果是大佬的话就可以跳过了)先看看网络摄像头的效果吧(在2060的电脑上运行 ) 转自《知乎——kaka》 实践时间Pipeline 2021年9月18日,在github上发布了一套使用ONNXRuntime部署anchor-free系列的YOLOR,依然
做人脸识别用 Python 比较多,但是今天碰上一个另类,他就跟别人不一样,就不用 Python 用 Go。其实不管是 P 还是 G,能认出脸来就是好样的。
课堂是学生学习的主要场所,课堂学习是学生获取知识、培养能力、提高素质的主要渠道。系统科学的课堂考勤是保证各项教学计划有效落实和顺利执行的重要条件。有效的课堂考勤是创造良好学习氛围,形成良好班风、学风及增强学生的组织性和纪律性的必要条件,同时也是保证学校教学秩序的稳定、提高教学质量的重要措施。
机器之心报道 机器之心编辑部 周末不能补课,平时也不能玩游戏。 8 月 30 日,国家新闻出版署发布了《关于进一步严格管理切实防止未成年人沉迷网络游戏的通知》,限制 18 岁以下未成年人每天玩网络游戏时间为一小时,且仅在周五、周六和周日,以及公共假期时间晚 8-9 点上线。 这些限制适用于包括手机在内的任何设备,「网络游戏」的定义,指所有在网络上提供服务的游戏,包括玩家语境中狭义的网游,也包括 PC 单机和主机游戏,覆盖国内过审上线的 WeGame 平台上的 PC 单机游戏、国行主机发行的主机游戏,但暂时
2018 Geekpwn CAAD(对抗样本挑战赛)继承了 NIPS CAAD 2017 比赛的形式,但同时也添加了一些新的挑战。2018 年 10 月,吴育昕和谢慈航受邀参加 Geekpwn CAAD CTF,这是一场展示不同类型对抗样本攻防的现场比赛。
6月9日,IBM首席执行官Arvind Krishna宣布,由于“人脸识别技术可能存在种族和性别歧视”,IBM将不再开发和提供人脸识别技术以及相关服务。
一项技术的研发、落地,通常在同一象限内基本能让全球的从业者达成初步共识,譬如5G、IoT等等。
生物识别是根据人类生理特征(人脸、指纹、虹膜等)和行为特征(姿态、动作、情感等)实现身份认证的技术。在进行人体身份认证时,其主要通过计算机与光学、声学、生物传感器和生物统计学原理等高科技手段密切结合,利用人体固有的生理特性和行为特征来进行个人身份的鉴定。目前,常用的生物识别技术主要包括:人脸识别、指纹识别、虹膜识别、行为识别以及步态识别。
现如今的人脸识别技术在金融、安防等领域的应用实际上的效果要比实验室里的差很多,某高校引入人脸识别晨读打卡,由于反应速度太慢,到中午还排着很长的队。可见人脸识别技术在实际应用中,由于各种物理因素(光照、角度、对焦、人鱼摄像头的距离等)导致抓拍的图片质量比较差,图片又经过网络传输到局域网进行对比,匹配识别(这个处理过程比较速度太慢),使得实际效果大打折扣。在大多数情况下,实际抓拍图像质量远低于训练图像质量。
当前,全国两会正在进行时,最高人民法院办公厅主任郭竞坤就最高人民法院工作报告和最高人民检察院工作报告中提到的人脸识别技术被滥用等内容进行了解读。
这家为47家美国最大的警察机构提供摄像设备及软件的公司,这一次竟然割爱,主动放弃了人脸识别这一在安防领域颇具潜力的技术。
一直以来以概念诗人的AI,如今正在逐渐向实用化迈进。在近期举办的2017中国国际金融展上,AI技术就成功地“反客为主”,将本应该以金融为主题的国际展会,变成了自己产业化成绩的秀场。 除了各大金融机构以外,今年的金融展还吸引来了包括松下、柯达、富士通、恩智浦半导体、瑞银科技、中软高科、Vertiv和维融电子在内的上百家国内外金融科技企业,展示了移动金融、自助设备终端、金融机具及配件、金融安全以及IT系统解决方案等大量的新产品和新技术。 当中,以人脸识别为代表的AI技术备受关注。对于银行等机构入场工作和服务
人脸验证做的是 1 比 1 的比对,即判断两张图片里的人是否为同一人。最常见的应用场景便是人脸解锁,终端设备(如手机)只需将用户事先注册的照片与临场采集的照片做对比,判断是否为同一人,即可完成身份验证。
近日,马萨诸塞州的萨默维尔市议会通过了禁止在公共场所使用面部识别软件的投票。新政策生效后,该市各机构、分局或下属部门,均不得在公共场所使用面部识别技术。
个人征信牌照出台前,各家征信公司加速推出产品。腾讯征信产品主要分两大类:一是反欺诈产品,二是信用评级产品。反欺诈产品:包括人脸识别和欺诈测评两个主要的应用场景。信用评级产品:目前可以提供应用的信用评分
推荐补充阅读:『Python开发实战菜鸟教程』工具篇:手把手教学使用VSCode开发Python
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
随着机器学习模型能力越来越强、效率越来越高,它已经逐步应用到各种实际场景中。但是 AI 模型本身也会面临很多安全问题,最受关注的就是对抗样本,它能欺骗深度模型。这对于很多场景都是毁灭性的,包括身份认证、城市大脑和医疗健康等。
据凤凰网科技报道,某大型行的人脸识别系统存在漏洞,造成6名储户百万元现金被异地盗取。受害人表示,远在异地的犯罪分子,7次通过了银行的人脸识别,6次通过活检,一次都没识别出来犯罪分子使用的是假人脸。
禁令是旧金山监事会(Board of Supervisors)今天刚刚通过的。监事会是一个专门监督旧金山政府的机构,有立法权,类似本地的议会,由旧金山每个区的民众选出一位监事会成员,代表民众来投票。
导读:目前图像识别技术在很多专业的图像预测领域已经达到甚至超过人类的识别标准,人脸识别的技术目前已经相对成熟,一般对于面部的识别能达到很高的识别准确率。 9月15号上映的《猩球崛起3:终极之战》被网友评为最高级的好莱坞科幻大片,在影片中,主演安迪魔术般的由人演进为猩猩凯撒。这部史诗级别的电影以科幻为视角,以人猿“换脸”,展开最激烈的“战争”。在动作捕捉技术的帮助下,安迪演绎了这个不可能的角色,大量自然光照下的凯撒的面部特写,技术上,近乎100%的以假乱真的真实程度,动作捕捉技术,本质上就是一种数字技术的化
随着人工智能行业的发展,越来越多的技术趋于成熟可用,AI +模式赋能成为各行各业的升级方向,其中以人脸识别技术的应用最为普遍。例如前段时间的大兴机场,再比如明年的东京奥运会,小到日常生活中已经渐渐出现的人脸支付,大到引发全社会对新型教育的看法以及探讨。人脸识别作为科技赋能的重要代表与支柱,越来越受到大型企业以及社会的关注,但是,在催生新型转变的同时,也引发了一些不好的影响,其中以教育行业最为突出。
AI科技评论消息,在国际权威人脸识别数据库LFW上,腾讯优图实验室在无限制条件下人脸验证测试(unrestricted labeled outside data)中提交的最新成绩为99.80%,再次刷新了人脸识别的准确率世界纪录。 LFW是麻省大学计算机视觉实验室维护的一套公开数据库,是目前评价人脸识别性能的试金石之一。 根据腾讯优图实验室的介绍,训练数据来自于他们自发搜集的名人数据库,包含了2万个身份,涉及200万张人脸图像。通过借助多机多卡的Tensorflow集群训练平台,优图实验室集成了三个深度分别
本文主要介绍OpenCV4.5.4中人脸识别模块的使用和简易人脸识别系统的搭建,供大家参考。
什么?方案里没有人脸识别,看来你们的方案还是老旧的方案。上面就是客户给你的方案汇报一个总结。是不是很委屈,是不是很郁闷,你是不是想说,我们也不是人脸识别企业,为什么要懂这么多啊。
本文介绍了人脸识别技术的起源、发展、技术原理、应用以及面临的挑战和未来的发展趋势。人脸识别技术已经广泛应用于各个领域,如安防监控、人员考勤、金融支付等场景。随着技术的不断发展,人脸识别技术将越来越智能化和精准化,同时也将面临一系列的挑战和问题。未来,人脸识别技术将逐渐与其他技术相结合,实现更广泛的应用和发展。
面部是人体的独特标识,每个人都有着独特的面部特征。通过一个人的面部可以识别出其身份,不过双胞胎可能有点困难。那么什么是面部识别系统?简单来说,面部识别系统是一种通过人的面部轮廓比较和分析来从数字图像或视频源中识别人的身份的技术。人脸识别已经成为深度学习的重要方向。
选自arXiv 机器之心编译 机器之心编辑部 人脸识别是机器学习社区研究最多的课题之一,以 3D 人脸识别为代表的相关 ML 技术十年来都有哪些进展?这篇文章给出了答案。 近年来,人脸识别的研究已经转向使用 3D 人脸表面,因为 3D 几何信息可以表征更多的鉴别特征。近日,澳大利亚迪肯大学的三位研究者回顾了过去十年发展起来的 3D 人脸识别技术,总体上分为常规方法和深度学习方法。 从左至右依次是迪肯大学信息技术学院博士生 Yaping Jing、讲师(助理教授) Xuequan Lu 和高级讲师 Sh
中兴智能视觉大数据报道:说起人脸识别研判预警系统可能很多人会比较懵,“人脸识别智能防控系统”它能自动捕捉动态影像,在数据库内进行比对,达到一定的相似度,会立即通过电脑指挥系统进行报警。这个是什么东东啊?在中兴视觉大数据看来用例子进行说明,大家可能更清楚点,在近些年的时候,其实有很多地方已经开始使用动态人脸识别研判预警系统了。
Deepfakes 是一种合成视频,通过深度学习技术将原视频中的人脸进行替换,然后输出新的视频。
作为最特别的生物密码,人脸面临着过度化妆、整容等带来的复杂问题,人脸识别技术是否能正确地做出判断?
Dlib是一个深度学习开源工具,基于C++开发,也支持Python开发接口,功能类似于TensorFlow与PyTorch。但是由于Dlib对于人脸特征提取支持很好,有很多训练好的人脸特征提取模型供开发者使用,所以Dlib人脸识别开发很适合做人脸项目开发。
领取专属 10元无门槛券
手把手带您无忧上云