首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

人脸图像识别(python人脸识别技术)

python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...不过肯定的一点是,你的人脸识别首先要将人脸转化为计算机可以识别的数据,人脸识别其实就是计算机方面的数据识别。...#import sys #python内置库 import cv2 #计算机视觉领域 import face_recognition #人脸识别库,如果读取图片的话,会是图像矩阵 #就是每个图片的rgb...当然对于视频动态图像也是可以的,我们python中也有调用摄像头的模块,以及也有可以将手机的摄像头将摄像头转换地址的,我们可以在代码中加入进来,调用摄像头并控制拍照片,这样就可以和这个结合起来,实现动态人脸识别...我们可以有这个思路,这里只是给大家简单介绍一下python的这个人脸识别库。当然也会有其他的编程语言的实现人脸识别。 后期会写出动态拍照人脸识别

15.3K60

图像处理智能化的探索:人脸识别裁图

3.1 人脸识别原理 概念 在做人脸识别之前,首先要理解在计算机里,一张图片意味着什么。...一幅图在数字化之后是这样的: (0, 0, 0) (2, 0, 0) …… (0, 0, 0) …… …… …… …… (160, 255, 255) (170, 255, 255) …… (255, 255, 255) 图像处理...这个xml文件是OpenCV训练好的人脸Haar特征分类器,我们要做的就是直接用这个数据来匹配图像。下面几行完成了读取级联表和图像灰度化。...对比之前的方案处理结果: ? 是不是高下立判呢:) 当然,还会存在诸如多人脸如何取舍、误识别等问题,可以针对具体问题具体优化。...总结 图像处理是新闻数据里很重要的一环,人脸识别只是其中一个部分,还有很多手段去提高新闻图片质量,钻研其中也是一件很有乐趣的事情。

1.6K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像处理-天空区域识别

    图像处理之天空区域识别 近几年来,去雾方法得到广泛的研究,汤晓鸥等人发现无雾图像相对于雾化图像具有较高的对比度,通过最大化恢复图像的对比度来实现图像去雾,但由于该方法没有从物理模型上恢复真实的场景反射率...处理不同透射率区域 改进的基于暗原色先验的图像去雾算法 作者: 蒋建国 对一些含雾图像,基于暗原色先验的去雾结果出现色彩失真,因为含天空、水面等大面积明亮区域的图像,他们的像素值很大,在此区域找不到像素值接近于...识别出天空区域单独处理 专利《一种基于天空识别与分割的暗通道先验去雾方法》 重点: 1、进行天空识别与分割,确定天空区域与非天空区域不同透射率。...2、引导滤波优化透射率,输出头屋图像 相似操作识别天空区域 1、天空部分平坦区域多,处理成梯度图表示图像的像素落差,梯度值越小的区域表示为平坦区域。 2、设定一个阈值来初步划分天空区域与非天空。...(阈值可以设置为0.8,灰度值为204左右均可),自我构思 该方案可以消除去雾图像边缘处的光晕现象,提高处理效率。

    73920

    数据分享|Python卷积神经网络CNN身份识别图像处理在疫情防控下口罩识别人脸识别

    p=28031 作者:Yuling Zhang 我们运用Python 3.8.1版本,爬取网络数据,基于卷积神经网络(CNN)的图像处理原理,搭建口罩识别技术训练集,构建人脸识别系统,最终建立高校师生行踪查询管理系统...以此作为本次研究的数据集,通过对数据集进行预处理,来训练人脸口罩检测的模型。...图4 裁剪后的正负样本集 (2)正负样本数据集灰度处理及像素处理 对数据集进行灰度处理可以增强图像对比度,增大图片的动态范围,让图像更清晰,特征更明显,能够更好的对模型进行训练。...3、针对高清视频的多帧连续对照识别、对监控设备的视频数据进行解码,并分离数据帧、形成每帧视频的图像数据,从而将人脸识别率呈指数级大幅提升。...4、设置每帧数据延时为1ms,使用人脸检测器检测每一帧图像中的人脸做灰度处理,并输出人脸数。5、对每个人脸定位画出方框,显示识别结果。

    30020

    MDFR :基于人脸图像复原和人脸转正联合模型的人脸识别方法

    为了应对这些挑战,之前的人脸识别方法通常先把低质量的人脸图像恢复成高质量人脸图像,然后进行人脸识别。然而,这些方法大多是阶段性的,并不是解决人脸识别的最优方案。...实验表示,训练完成之后的MDFR可以通过一个单一化的网络,一次性地从多重低质量因素影响的侧面人脸图像中恢复其高清的正面人脸图像,并有效的提高人脸算法的识别率。...为了解决这些问题,已经有很多方法使用分阶段模型来分别处理相应的低质量因子影响的人脸图像,即首先将低质量人脸恢复成高质量的人脸图像,随后进行人脸转正并用于人脸识别。...然而这些方法都只考虑了人脸识别的单一因素,很少有方法能够同时解决影响人脸识别的多重因素。因此,这类基于单一因素的人脸处理方法并不能很好的适用于非限制条件下的人脸识别。...可以看出不同于之前只能处理单一的任务的方法,文中所提出的方法既可以对人脸进行转正也可以进行高质量复原,且取得了最好的视觉效果。

    1.4K20

    python图像轮廓识别_python数字图像处理

    该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别...、图像分类应用。...希望文章对您有所帮助,如果有不足之处,还请海涵~ 前面一篇文章介绍了图像分类知识,包括常见的图像分类算法,并介绍Python环境下的贝叶斯图像分类算法、基于KNN算法的图像分类和基于神经网络算法的图像分类等案例...这篇文章将详细讲解图像分割知识,包括阈值分割、边缘分割、纹理分割、分水岭算法、K-Means分割、漫水填充分割、区域定位等。万字长文整理,希望对您有所帮助。...二.基于阈值的图像分割 三.基于边缘检测的图像分割 四.基于纹理背景的图像分割 五.基于K-Means聚类的区域分割 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。

    90120

    Java + opencv 实现人脸识别,图片人脸识别、视频人脸识别、摄像头实时人脸识别

    、实时摄像头人脸识别、视频文件人脸识别 * @Description: OpenCV-4.1.1 测试文件 * @date: 2019年8月19日 17:17:48 * @version: V-1.0.0...// 3- 本地图片人脸识别识别成功并保存人脸图片到本地 face(); // 4- 比对本地2张图的人脸相似度 (越接近1越相似) String basePicPath...* @date: 2019年8月19日 17:19:36 * @param image 待处理Mat图片(视频中的某一帧) * @return 处理后的图片 */ public static...XML文件 //OpenCV 图像识别库一般位于 opencv\sources\data 下面 // CascadeClassifier facebook=new CascadeClassifier...: 2- 测试本地视频识别人脸 3- 测试本地图片人脸识别 4- 测试本地2张图片人脸的相似度 完结。

    20.3K32

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    18.9K30

    Python使用Opencv进行图像人脸、眼睛识别实例演示

    效果展示 下面使用 haarcasecade_eye.xml 进行人眼识别的效果图: 人脸识别是一种可以自动检测图像或视频中存在的人脸的技术。...什么是人脸识别人脸识别是一种计算机技术,它使用算法来检测,定位和识别数字图像或视频帧中的人脸。这种技术可以通过两种方式实现:人脸检测和人脸识别。...这些算法使用训练数据集中的人脸图像来学习每个人脸的特征,并在新图像中使用这些特征来识别人脸。 如何使用 OpenCV 实现人脸识别?...OpenCV 是一种流行的计算机视觉库,它支持各种各样的图像处理和分析任务。在本博客中,我们将使用 OpenCV 来实现人脸识别。 首先,您需要安装 OpenCV 库。...,因为人脸检测器需要处理灰度图像: image = cv2.imread('image.jpg') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 接下来,

    1.3K20

    第七章(1.2)图像处理——人脸识别技术发展及实用方案设计

    例如语音识别,就是在求取合适的变换函数,将输入的一维时序语音信号变换到语义空间;而近来引发全民关注的围棋人工智能AlphaGo则是将输入的二维布局图像变换到决策空间以决定下一步的最优走法;相应的,人脸识别也是在求取合适的变换函数...,将输入的二维人脸图像变换到特征空间,从而唯一确定对应人的身份。...这期间,对各种人脸识别影响因子的针对性处理也是那一阶段的研究热点,比如人脸光照归一化、人脸姿态校正、人脸超分辨以及遮挡处理等。...这一结果表明:大训练数据集对于有效提升非受限环境下的人脸识别很重要。然而,以上所有这些经典方法,都难以处理大规模数据集的训练场景。...2014年前后,随着大数据和深度学习的发展,神经网络重受瞩目,并在图像分类、手写体识别、语音识别等应用中获得了远超经典方法的结果。

    1.1K40

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...SECRET_KEY ='9wOlqd4sPvLc7ZKtLxMlBVkcikXHZ4rz' client = AipFace(APP_ID, API_KEY, SECRET_KEY)#创建一个客户端用以访问百度云 #图像编码方式...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸

    12.8K11

    LBPH人脸识别

    ()#LBPH人脸识别 recognizer.train(images,np.array(labels))#模型训练 predict_image=cv2.imread('C:/Users/xpp/Desktop...例子: 设定阈值为76,对其8邻域像素进行二值化处理: 128>76:1 36<76:0 251>76:1 48<76:0 9<76:0 11<76:0 213>76:1 99>76:1...二值化后,从当前像素点的正上方开始,以顺时针为序得到二进制序列:01011001 二进制序列“01011001”转换为所对应的十进制数“89”: 图像逐像素用以上方式进行处理,得到LBP特征图像,...,每个单元格在水平方向上的像素个数 grid_y表示将LBP特征图像划分为一个个单元格时,每个单元格在垂直方向上的像素个数 threshold表示在预测时所使用的阈值,如果大于该阈值,那么没有识别到任何目标对象...(src) src表示输入图像 注意:置信度评分用来衡量识别结果与原有模型之间的距离。

    9K30
    领券