导读:在本文中,我们将会接触到一个既熟悉又陌生的概念——人脸识别。之所以熟悉,是因为人脸识别技术在我们日常生活中应用极其广泛,例如火车站刷脸验票进站、手机人脸解锁等;之所以陌生,是因为我们可能并不了解人脸识别的原理,不了解人脸识别的任务目标、发展历程与趋势。
摘要:本文主要从静态人脸识别局限性的提出,对动态人脸识别技术进行了探讨,介绍其研究背景,工作原理,结果分析,给出了在生活领域中的应用情况,并分析了存在的难题,发展趋势以及在人工智能化潮中的重要作用。
人脸关键点:也称为人脸关键点检测、定位或人脸对齐,根据人脸图像定位出人脸面部的关键区域(嘴巴、鼻子、眼睛、耳朵、脸部轮廓等等),其中根据72个关键点描述五官的位置来进行人脸跟踪。
这是第二次给大家推荐Github项目,上次给大家介绍的是使用核心主义价值观作为编码的编译器:媒体人自保攻略,今天介绍在Github开源的人脸识别项目,目前已经获得2000+的star,以后推荐Github项目会成为一个保留项,自己遇到觉着不错的就跟大家推荐,希望跟大家共同进步。
前段时间和第三方人脸识别供应商对接,写了一个demo,主要功能是人脸识别准确率,增加底库,删除底库,人脸比对等等。让我对人脸识别有了一个新的意识。后来公司需要做个人脸识别的一些应用场景,根据这些场景,看看哪些符合公司的需要。于是自己规划了下。
本次课程,分为三个部分,第一个部分是人脸识别概述,第二个部分是讲解人工神经网络,第三部分是人脸识别算法概述。
关注腾讯云大学,了解最新行业技术动态 戳【阅读原文】查看55个腾讯云产品全集 一、课程概述 腾讯云神图·人脸识别(Face Recognition)基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 【课程目标】 快速了解腾讯云人脸识别产品 了解腾讯云人
https://github.com/seetafaceengine/SeetaFace2
当各路资本都蜂拥而至某一领域的时候,其也就结束了淘金的黄金时期,当前的人脸识别正处于这一阶段。
近日,江苏卫视《最强大脑》第四季人机大战第三场已经结束。从未失算的“水哥”王昱珩,在图像识别方面与搭载百度大脑的小度机器人进行实力交锋。最终,“小度”以2:0的战绩战胜对手,并以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格。 本场竞赛题目为 “核桃计划”:通过三段在夜幕下分别从行车记录仪、高位摄像头和女生手机中拍到的模糊动态影像中,让“小度“和水哥识别三位“嫌疑人”的特征后,从30位性别相同、身高体重年龄均相似的候选人现场拍照中,准确找出三位“嫌疑人”。 比赛虽已结束,但对于相关人工智能识别技术的
人脸识别是机器学习的直接应用,这项技术已经被消费者、行业和执法机关广泛采用,它可能为我们的日常生活带来了便利,但也有严重的隐私问题。人脸识别已经超过了人类的工作效率,但是,在某些应用中实际实现时还存在问题。 立足于九十年代MIT的Eigenfaces方法,人脸识别第一次成功的大规模实现是2014年Facebook的DeepFace项目,准确性在实验室条件下达到了人类水平。从2014年开始,更大的训练数据集、GPU以及神经网络架构的快速发展进一步提高了人脸识别在通向现实世界可靠应用的更为丰富的上下文中的效率。
近日,来自中科院计算所的人工智能国家队中科视拓宣布,开源商用级SeetaFace2人脸识别算法。
上个案例中我们讲了如何用PaddlePaddle进行车牌识别的方法,这次的案例中会讲到如何用PaddlePaddl进行人脸识别,在图像识别领域,人脸识别也属于比较常见且成熟的方向了,目前也有很多商业化的工具进行人脸识别。广义的人脸识别实际包括构建人脸识别系统的一系列相关技术,包括人脸图像采集、人脸定位或检测、人脸识别预处理、身份确认以及身份查找等;而狭义的人脸识别特指通过人脸进行身份确认或者身份查找的技术或系统。 人脸识别是一项热门的计算机技术研究领域,它属于生物特征识别技术,是对生物体(一般特指人)本身
以上就是完成人脸识别所需的步骤,如果你想在这个基础上,做人脸比对或者身份证校验等拓展功能,可以借助用户的身份证、姓名等信息,再结合第三方的AI服务,比如腾讯云的人脸核身来完成,本质上底层数据支持来自公安的实名认证接口
李凯周,天津大学计算机科学与技术专业硕士。现担任中科视拓研发部产品总监兼研发总监,负责研发算法部署、SDK化和数据分析管理工作,主导SeetaFace2的算法发布。
本文全面介绍了端到端深度学习人脸识别技术,包括人脸检测,人脸预处理和人脸 表征等方向,详细介绍了最新的算法设计,评估指标,数据集,性能比较等。
大数据文摘记者谭婧、魏子敏 安防已经成为人工智能落地场景中的重要赛道,其涉及的智能视频分析、人脸识别等关键技术也在研究领域受到了极大的关注。那么安防领域中涉及的人脸识别有何痛点?人工智能+安防的未来又有哪些新的趋势? 10月29日,2017年第十六届中国国际公共安全博览会(CPSE安博会)在中国深圳会展中心开幕。在政府管理论坛上,清华大学媒体大数据认知计算研究中心主任王生进教授发表了题为《人像态势识别及其在智能视频监控中的应用》的演讲,他指出,目前我国视频监控建设卓有成效,摄像头的数量惊人,达到了2000多
电影电视剧中经常出现大规模的人脸识别网络监控,随着人脸识别技术的进步,电影里的一切正逐步变成现实。 据了解,传统的人脸识别技术拥有超过30年的研发历史,主要是基于可见光图像的人脸识别技术,但无法适应环境光照变化是该技术的痛点所在;2017年人工智能热度再起,将人脸识别推向了大众视野。 iPhone X 使用Face ID替代指纹解锁功能,并利用红外摄像头解决了解锁时的光照问题,被视为苹果公司顺应潮流的一项革新举措。 支付宝在2015年就实现了人脸识别登录。与Face ID基于设备的功能不同的是,支付宝的
4月13日结束的计算机视觉沙龙圆满落幕。本期沙龙从构建图像识别系统的方法切入,讲述腾讯云人脸识别、文字识别、人脸核身等技术能力原理与行业应用,为各位开发者带来了一场人工智能领域的技术开拓实践之旅。下面是范锦老师关于腾讯云人脸识别系统在传统行业的应用与落地的总结。
该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置和大小;对于跟踪而言,还需要确定帧间不同人脸间的对应关系。 1.Robust Real-time Object Detection. Paul Viola, Michael Jones. IJCV 2004. 入选理由: Viola的人脸检测工作使得人脸检测真正变得实时可用。他们发表了一系列文章,这篇是引用率最高的一篇。 2.Fast rotatio
目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富, 应用市场潜力巨大。然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用。因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。
编者注:本文根据山世光在 CNCC 2016 可视媒体计算论坛上所做的报告《深度化的人脸检测与识别技术:进展与问题》编辑整理而来,在未改变原意的基础上略有删减。 山世光,中科院计算所研究员,中科院智能信息处理重点实验室常务副主任。主要从事计算机视觉、模式识别、机器学习等相关研究工作。迄今已发表CCF A类论文50余篇,全部论文被Google Scholar引用9000余次。曾应邀担任过ICCV,ACCV,ICPR,FG等多个国际会议的领域主席(Area Chair)。现任IEEE Trans. on Ima
端到端深度人脸识别系统由三个关键要素构成:人脸检测(face detection)、人脸对齐(face alignment)和人脸表征(face representation)。其中,人脸检测的作用是定位静止图像或视频帧中的人脸位置。然后,人脸对齐将人脸校准到一个规范的视角,并将人脸图像裁剪到一个标准化像素大小。最后,在人脸表征阶段,从对齐后的图像中提取具有鉴别性的特征用于识别。
上一期“计算机视觉战队”已经和大家分享了相关的人脸检测、识别和验证背景及现状的发展状况,今天我们继续说说人脸领域的一些相关技术以及新框架的人脸检测识别系统。
从其官网介绍来看: Linkface 凭借在人脸识别领域数年的技术累积,在大数据和深度学习的驱动下,成功搭建了一套高效稳定的人脸分析系统,囊括了人脸检测、人脸关键点检出、人脸识别、人脸属性分析、活体检
人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
中兴视觉大数据报道:从人脸识别技术在智能安防下的一个具体应用场景开始:你在门口安装了摄像头,当有物体出现在摄像头范围内的时候,摄像头自动拍摄下图像,对图像进行识别;识别后如果发现是个人,并且长时间在门外并没有敲门进门等行为之后,就会及时报警给户主;或者,在夜晚的时候发现有物体移动,对物体进行识别,如果是可疑的物体就主动报警。人脸识别技术在安防领域已经有了很大的应用,未来将有更广阔的应用空间,因此对安防企业来说,人脸识别技术的市场潜力无可估量。
face_recognition 宣称是史上最强大,最简单的人脸识别项目。据悉,该项目由软件工程开发师和咨询师 Adam Geitgey 开发,其强大之处在于不仅基于业内领先的 C++ 开源库 dlib 中的深度学习模型,采用的人脸数据集也是由美国麻省大学安姆斯特分校制作的 Labeled Faces in the Wild,它含有从网络收集的 13,000 多张面部图像,准确率高达 99.38%。此外,项目还配备了完整的开发文档和应用案例,特别是兼容树莓派系统。简单之处在于操作者可以直接使用 Python和命令行工具提取、识别、操作人脸。
为全面分析人脸识别市场现状、面临的风险隐患及有效的安全保障措施,顶象近日发布《人脸识别安全白皮书》。《白皮书》就保险行业人脸安全事件进行了详细分析,并阐述了保险行业的人脸安全应用实践。
号外!号外!现在人们终于可以在浏览器中进行人脸识别了!本文将为大家介绍「face-api.js」,这是一个建立在「tensorflow.js」内核上的 javascript 模块,它实现了三种卷积神经网络(CNN)架构,用于完成人脸检测、识别和特征点检测任务。
目前谈论起人脸识别,已经不是什么高深莫测的东西了。很多人都用过,切切实实的走进了人们的生活中,也确实给很多人带来了便利。从火车站的身份证人脸对比,小区的人脸识别门禁,超市的人脸识别储物柜,再到家庭的人脸识别智能锁,手机上的人脸识别解锁,人脸识别支付,各种嵌入式上面的人脸识别逐渐走进人们的生活。不管是否承认,我们确实逐渐进入了一个人工智能越来越繁荣的时代。嵌入式的ai也吸引了一大批爱好者的积极跟进。本文结合这几年的国内嵌入式上人脸识别的发展,谈一谈我的一些想法和对未来发展的一些预测。
大家下午好,我主要是针对智慧工地履约考勤系统的应用实践跟大家进行一次交流。这次的讲解分六个部分,前沿,产品分析,系统架构,主要技术,功能分析,应用展望。做一款产品肯定有特定的原因:响应交通运输部公路品质工程建设的号召,加强四新技术的应用。我们在小学课本里面学的赵州桥、都江堰,包括今天国家游泳中心,水立方、鸟巢都是典型的品质工程。品质过程当中要求加强四新技术的应用,四新技术包括新材料、新设备、新技术以及新工艺的应用。
人脸识别(Face Recognition)是一种依据人的面部特征(如统计或几何特征等),自动进行身份识别的一种生物识别技术,又称为面像识别、人像识别、相貌识别、面孔识别、面部识别等。通常我们所说的人脸识别是基于光学人脸图像的身份识别与验证的简称。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
这次版本升级,从版本号SeetaFace2 跳过 3 、4、 5直接升级到SeetaFace6,总之就是 666 吧~
机器之心原创 作者:高静宜 「身份验证是整个互联网金融的基础,要做到从实名到实人,生物识别在这里起到了很重要的作用。」蚂蚁金服生物识别技术负责人、全球核身平台资深专家陈继东告诉机器之心。生物识别技术的成熟、金融支付安全性与使用体验的更高要求,正推动互联网金融公司、商业银行对生物识别认证技术的开发与应用。2015 年 3 月,阿里巴巴集团执行主席马云在德国 CeBIT 展会开幕式上发布并演示了人脸识别支付认证技术,同年年末,蚂蚁金服「刷脸」认证在支付宝和网商银行正式上线。今年 2 月 21 日,蚂蚁金服「刷
“照片分享”是社交场景中比重很大的一部分,当然现在来看视频(特别是短视频)也变得越来越多,而照片又以人像为主,所以我们看到如QQ空间、微博、微信朋友圈里,自拍、合影占据着大量的版面。人脸相关的应用也越来越多:如相机中嵌入人脸检测,拍照时实时将人脸标注出来;又比如一些相册应用,能根据人脸识别进行照片分类;再比如支付宝的扫脸登录,将人脸作为个人身份ID。 这些应用都以人脸检测、人脸识别技术为基础,检测指将人脸定位出来,找到人脸所在位置,而识别则是匹配出这个人脸是谁,不过通常我们将这两项技术统称为人脸识别。随着深
最近几年,“追星”已经成为常事,各种姐姐粉、妈妈粉、阿姨粉涵盖了全年龄层的人群。但是,小鲜肉太多让人分不清,怎么办?照片人太多找不到爱豆怎么办?其实明星撞脸,不一定是整容的原因,在我们刚开始追星的时候,一定会遇到一个问题:脸盲症!
腾讯云人脸识别产品基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、静态活体检测等多种功能,主要以公有云API的方式,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、智慧社区、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。
最近火爆朋友圈的军装照H5大家一定还记忆犹新,其原理是先提取出照片中的面部,然后与模板进行合成,官方的合成处理据说由天天P图提供技术支持,后端合成后返回给前端展示,形式很新颖效果也非常好,整个流程涉及的人脸识别和图像合成两项核心技术在前端都有对应的解决方案,因此理论上前端也可以完成人脸识别-提取-合成整个流程,实现纯前端的军装照H5效果。
们生存的这个星球上,居住着70多亿人。每个人的面孔组成部分相同,它们之间的大体位置关系也是固定的,并且每张脸的大小差异也不大。然而,它们居然就形成了那么复杂的模式——即使是面容极其相似的双胞胎,也能由微妙的差别区分出来。人脸特征如同指纹一样,无法找到完全相同的存在。那么,区分如此众多的不同人脸的“特征”到底是什么?是否可以设计出与人类一样能够自动识别人脸的机器?这是近几十年来被广泛研究着的热门问题。随着AI技术的发展,也取得了显著的突破。
中兴智能视觉大数据报道:人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。人脸识别的应用集成了人工智能、机器识别、机器学习、模型理论、专家系统、视频图像处理等多种专业技术,同时结合中间值处理的理论与实现,是生物特征识别的最新应用,其核心技术的实现,展现了弱人工智能向强人工智能的转化。人脸识别在国内广为人知始于近几年,其实早在20世纪90年代人脸识别就已在美国、德国、日本等国家应用,作为新兴技术,人脸识别搭载“高科技”标签,广为产品厂商和用户喜爱。
本文介绍了人脸识别和OCR识别技术的原理、应用和评测方法,并探讨了与腾讯云合作的政企项目应用情况。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
精彩内容 经过多年市场验证,云端人脸识别无法满足企业对身份信息存储的高安全性要求,单一生物特征识别技术如虹膜识别、静脉识别等无法保证身份认证的准确,人脸识别技术该以何种姿态服务产业? 捷通华声作为国内
腾讯AI Lab计算机视觉中心人脸&OCR团队是2016年11月底开始组建和开展工作,我们以研发业界领先的算法为目标驱动,逐步克服人手不足、训练数据不足等困难,不断夯实基础,做既有原创性又能落地应用的国际前沿研究。在上一期(腾讯AI Lab 计算机视觉中心人脸&OCR团队近期成果介绍(1))中已经介绍了我们团队的一些研究成果,近期,我们团队有一些新的成果再和大家进一步分享。 1 人脸研究进展 人脸研究的两大关键任务是人脸检测与人脸识别。在上一期中,我们主要介绍了我们团队在人脸检测的两个国际权威评测平台(WI
领取专属 10元无门槛券
手把手带您无忧上云