人脸识别作为一项成熟的生物识别技术,目前已广泛应用于金融、公安、社会服务、电子商务等领域。然而人脸很容易用视频或照片等进行复制,人脸活体检测是人脸识别能否有效应用的前提,目前对活体检测方法的研究有很多。大多数活体检测方法是研究性质的,它们大多基于特征提取与训练的方式,这类方法的准确性是不可控的。另一类方法是要求用户做转头、摇头、眨眼或者张嘴等动作,但是这类方法对于视频的防欺骗性不高。
在日常生活工作中,出现了人脸验证、人脸支付、人脸乘梯、人脸门禁等等常见的应用场景。这说明人脸识别技术已经在门禁安防、金融行业、教育医疗等领域被广泛地应用,人脸识别技术的高速发展与应用同时也出现不少质疑。其中之一就是人脸识别很容易被照片、视频、人脸模型等方式轻易蒙混,并且网络上也传出不少破解方法。针对这些问题,人脸识别技术其实也是进行了升级迭代,当前的人脸识别系统是需要具有人脸活体检测功能的。那么人脸活体检测功能到底是什么呢?
人脸识别是一项热门的 计算机技术研究领域,它属于生物特征识别技术,是对 生物体(一般特指人)本身的生物特征来区分生物体个体。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
人脸识别技术是近年来出现的一种基于人的脸部特征信息进行身份识别的生物特征识别技术。与其他生物识别技术相比较,人脸识别具有友好、简便、准确、经济及可扩展性良好等众多优势,可广泛应用于安全验证、监控、出入口控制等多个方面,目前人脸识别技术已经应用到门禁考勤,访客管理,巡更、会议签到、身份核验等场所。
目前已经有了越来越多的基于人脸识别的应用,例如我们现在应用极广的“刷脸支付”、“刷脸打卡”等。但随着技术的发展,当年很多电影中的画面慢慢变成了现实,坏人可以通过带上提前准备好的照片或者面具,甚至是一副眼镜,轻而易举的被识别成其他人,随着这种人脸伪造的风险和隐患逐日增加,人脸活体检测技术得到了越来越多的关注。
目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富, 应用市场潜力巨大。然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用。因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。
随着大数据时代的到来,个人信息安全问题日益严峻,基于图像处理的人脸识别和检测技术得到了广泛的应用。然而,目前人脸检测技术都是针对数量较小的人脸图像,随着大数据概念的深入,图像大数据处理将对人脸识别技术提出更高要求。在最原始的基于人脸识别系统中,基于当前拍摄的人脸照片与预先存储的人脸照片之间的比对,来进行身份验证。然而,当将被仿冒者本人的照片置于这种基于人脸照片比对的身份验证系统中的摄像头前时,这种基于人脸照片比对的身份验证系统可能通过用户身份验证。换言之,恶意用户可以使用被仿冒者的照片来进行恶意攻击(即,照片攻击),这种基于人脸照片比对的人脸识别系统不能抵抗照片攻击。于是,人脸活体检测技术应运而生。
人脸识别成了近年火热的人工智能落地方向之一。简单地看来,人脸识别是一个验证身份的过程,所以后跟个人身份证打通也是理所应当。要判断画面上呈现的是不是一个真的人脸,途径和手段是可以非常多样化的。要验证是不是真正的人脸,光靠一个二维的模式识别,或者人脸特征点的对齐都是远远不够的,存在一定的局限性。
随着人脸识别技术日趋成熟,商业化应用愈加广泛,然而人脸极易用照片、视频等方式进行复制,因此对合法用户人脸的假冒是人脸识别与认证系统安全的重要威胁。目前基于动态视频人脸检测、人脸眨眼、热红外与可见光人脸关联等领先业界的人脸活体检测算法,已经取得了一定的进步。
如今,人脸识别已经走进了我们生活中的方方面面,拿起手机扫脸付账,扫描人脸完成考勤,刷脸入住酒店纷纷便利了我们的生活。而人脸识别里一项必不可少的技术就是人脸活体检测,即AI不但要确定这是“你”,还需要确定这是“真实存在的、活的你”。
在生物识别系统中,为防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统需具有活体检测功能,即判断提交的生物特征是否来自有生命的个体。一般生物特征的活体检测技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息,人脸活体检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
随着软件算法和物理终端的进步,人脸识别现在越来越被广泛运用到生活的方方面面,已经成为了重要的身份验证手段,但同时也存在着自身的缺陷,目前常规人脸识别技术可以精准识别目标人像特征,并迅速返回比对结果,但未加入防御照片图像等伪造人脸的技术,无法辨别实时目标人脸的真假情况,在实际身份核验场景中,容易被人脸照片、人脸视频、3D面具等攻击行为干扰,因此如何高效抵御各类欺骗行为攻击,是人脸识别技术迫切需要解决的问题。
人脸识别技术与其他生物特征识别技术相比,在实际应用中具有天然独到的优势:通过摄像头直接获取,可以非接触的方式完成识别过程,方便快捷。目前已应用在金融、教育、景区、旅运、社保等领域,但方便的同时也带来了一些问题,易获取,使得人脸容易被一些人用照片、视频等方式进行复制,从而达到窃取盗用信息的目的。为了保障信息安全,人脸识别技术责无旁贷,而抗攻击,是其研究中必不可少的一环,其中,人脸活体检测就是技术的核心了。
本文首发于政采云前端团队博客:基于 Web 端的人脸识别身份验证 https://www.zoo.team/article/web-face-recognition
机器之心报道 机器之心编辑部 你的人脸不会被恶意「盗刷」,也有小视科技 AI 算法的一份力。 对于很多人来说,刷脸解锁手机、进行快捷支付是每天必不可少的动作。不少银行和支付机构现在还开启了手机 APP 人脸识别认证,让以往需要前去营业网点才能申请的服务可被远程验证。但与此同时,利用图片、3D 模型等破解人脸识别的方法也越来越多,甚至还出现了 Deepfake 这种仿照他人人脸,生成特定视频的深度学习技术。 随着人脸识别破解技术的出现,人们对于活体检测需求逐渐增多,安全级别要求也愈发严格。当前,活体检测是人
照片、视频中的人脸有时也能骗过一些不成熟的人脸识别系统,让人们对人脸解锁的安全性产生很大怀疑。在这篇 4 千多字的教程中,作者介绍了如何用 OpenCV 进行活体检测(liveness detection)。跟随作者给出的代码和讲解,你可以在人脸识别系统中创建一个活体检测器,用于检测伪造人脸并执行反人脸欺骗。
这样的用户可能会拿到另一个人的照片。甚至可能他们的手机上就有其他人的照片或视频,他们可以用这样的照片或视频来欺骗识别人脸的相机(就像本文开头的图片那样)。
人脸识别是目前商业应用最成熟、最广泛的人工智能技术之一,成为开发者、企业接入AI能力的首选。
生物识别技术在验证过程中出现的漏洞可能会让不法分子破解各种人脸识别应用,包括苹果的 Face ID。
因工作需要手机端运用人脸识别打卡,本期教程人脸识别第三方平台为虹软科技,本文章讲解的是人脸识别RGB活体追踪技术,免费的功能很多可以自行搭配,希望在你看完本章课程有所收获。
作者 | 彭建宏(旷视科技产品总监彭建宏) 整理 | Just 出品 | 人工智能头条(公众号ID:AI_Thinker) “刷脸”曾一度是人们互相调侃时的用语,如今早已深深地融入我们的生活。从可以人脸解锁的手机,到人脸识别打卡机,甚至地铁“刷脸”进站…… 人脸识别技术越来越多地应用在了各种身份验证场景,在这种看起来发生在电光火石之间的应用背后,又有哪些不易察觉的技术在做精准判别?算法又是通过何种方式来抵御各种欺诈式攻击? 我们近期邀请到旷视科技产品总监彭建宏,他负责 FaceID 在线身份验证云服务的产品
人脸识别已经成为生活中越来越常见的技术,其中最关键的问题就是安全,而活体检测技术又是保证人脸识别安全性的一个重要手段,本文将向大家简单介绍活体检测,并动手完成一个活体检测模型的训练,最终实现对摄像头或者视频中的活体进行识别。
AI 科技评论按:本文来自著名的计算机视觉教学网站「pyimagesearch」,文章作者为 Adrian Rosebrock。在本文中,Adrian 将就「如何鉴别图像/视频中的真实人脸和伪造人脸」这一问题进行深入的分析,并介绍使用基于 OpenCV 的模型进行活体检测的具体方法。雷锋网 AI 科技评论编译如下。
本篇针对目前信安标委《基于可信环境的远程人脸识别认证系统技术要求》标准规范征集意见稿进行学习!
首先谢谢大家对这个库的关注,前一篇博文得到了大家的 支持 和 Star,十分开心。
今天,也就是 2017 年 9 月 11 日,小米发布了两款手机产品 Note 3 和 MIX 2, 其中,Note 3推出了一项新功能,人脸解锁。 以后,请忘掉密码,忘掉指纹,欢迎走进看脸的时代。 首先,来看看小米 MIX 2 和 Note 3: 小米 Note 3 其实就是大屏版的小米 6,屏幕尺寸升级为 5.5 英寸,处理器则降级为高通骁龙 660 。后置摄像头的配置与小米 6 相同,依旧是 1200 万像素的广角镜头 + 1200 万像素的长焦镜头,前置摄像头则升级到了 1600 万像素,2μm
为人脸登录提供人脸注册集合,基于人脸进行无动作活体检测、及后台在线活体检测算法,判断用户为真人,保障业务环节中的用户真实性判断。
【新智元导读】 2017年的“315”落下帷幕,人脸识别技术公司纷纷躺枪。16日一大早,大家纷纷发表声明,表示自家的人脸识别技术还是相当安全的。本文整理了各家的回应,由此也可以看到,这些科技公司是否真的“躺枪”?人脸识别技术近年来持续火热,那么真实的行业发展状况如何?商业化应用中是否真的会如此轻易就被攻破?来看看专家们怎么说。 一年一度的“315” 落下帷幕,伴随着人工智能的火热,相关技术应用也在这场以“打假”、“维护消费者权益”为名的晚会上被点名。其中最受关注的一个便是——人脸识别。 晚会现场,主持人现
人脸识别是目前应用较广泛的AI产品服务,但在售前接触客户中,发现很多销售同学和客户对于人脸识别的认识不够全面,从而在使用和计价过程中遇到较多的问题,所以通过这篇博客个人总结一些应用架构实践,帮助大家理解“人脸识别”的应用;
“某男子9秒被骗245万元”、“某老板10分钟被骗430万元”、“AI换脸不雅视频敲诈勒索”等案例相继出现。
每周精选 Algorithm System Anti-Spoofing 之人脸活体检测 在小编之前的文章系列中曾介绍过的对抗样本攻击,是目前Deep Learning比较火热的一个研究方向,因为它掀起了关注深度学习在安全领域潜在问题的热潮。虽然活跃于学术界的对抗样本目前还未渗入到工业界中,anti-spoofing(反欺诈)仍一直是大家关注的焦点。人脸识别是大家最为熟悉的应用深度学习的例子,结合人脸识别技术的APP在市面上比比皆是,本文将简单介绍在人脸识别应用中的反欺诈技术——人脸活体检测。 人脸识别,
从2015年,马云在德国展示人脸支付技术以来,经过几年发展,人脸支付已经开始走向商用。近日,支付宝蜻蜓、微信青蛙以及人行牵头银联和各商业银行推进落地的刷脸支付系统陆续开始推向市场,笔者近期分别对相关产业各方采用的技术原理和基本概念进行了一些学习和研究,在此做一下记录和分享。
这次版本升级,从版本号SeetaFace2 跳过 3 、4、 5直接升级到SeetaFace6,总之就是 666 吧~
本文是《人脸识别完整项目实战》系列博文第1部分,第一节《完整项目运行演示》,本章内容系统介绍:人脸系统核心功能的运行演示。
人脸识别以前在小编的记忆中,都是电影的情节,[ 金库!!! 安全大门!!! 收藏地下库!!! ] 扫脸进库 Duang~
本文是《人脸识别完整项目实战》系列博文第1章《目录大纲篇》,本章内容系统介绍,《人脸识别项目完整实战》系列博文的目录结构,共8大部分53个章节。
人脸识别: Face Recognition 基于腾讯优图强大的面部分析技术,提供包括人脸检测与分析、五官定位、人脸搜索、人脸比对、人脸验证、人员查重、活体检测等多种功能,为开发者和企业提供高性能高可用的人脸识别服务。 可应用于智慧零售、在线娱乐、智慧楼宇、在线身份认证等多种应用场景,充分满足各行业客户的人脸属性识别及用户身份确认等需求。 人脸核身: 腾讯云慧眼(原金融级身份认证升级版)是一组对用户身份信息真实性进行验证审核的服务套件,提供各类认证功能模块,包含证件 OCR 识别、活体检测、人脸1:1对比等能力,以解决行业内大量对用户身份信息核实的需求,广泛应用于金融、运营商、共享出行等领域。
机器之心专栏 作者:阅面科技童志军 北京时间 9 月 13 日凌晨 1 点整,大家期待已久的苹果发布会终于拉开序幕。在本次发布会中,最受关注的莫过于高端机型的 iPhoneX。它搭载了集成六核处理器的 A11 芯片,支持无线充电以及 4K/60 帧视频拍摄、1080P/240 帧视频拍摄,同时,FaceID 也是其最大的亮点之一。 与指纹识别不同的是,网络上出现很多对于 FaceID 的质疑和吐槽,「睡觉的时候被女朋友拿去解锁怎么办?」,「看一眼淘购物车就支付」等等。那么事实是否如此呢?新技术的出现总是伴
本文是学习github5.com 网站的报告而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
机器之心原创 作者:高静宜 「身份验证是整个互联网金融的基础,要做到从实名到实人,生物识别在这里起到了很重要的作用。」蚂蚁金服生物识别技术负责人、全球核身平台资深专家陈继东告诉机器之心。生物识别技术的成熟、金融支付安全性与使用体验的更高要求,正推动互联网金融公司、商业银行对生物识别认证技术的开发与应用。2015 年 3 月,阿里巴巴集团执行主席马云在德国 CeBIT 展会开幕式上发布并演示了人脸识别支付认证技术,同年年末,蚂蚁金服「刷脸」认证在支付宝和网商银行正式上线。今年 2 月 21 日,蚂蚁金服「刷
1.误识率(False;Accept;Rate;FAR):这是将其他人误作指定人员的概率;
昨晚的央视315晚会上,人脸识别技术被曝存在安全隐患。不少观众看到主持人在现场技术人员支持下,仅凭两部手机、一张随机正面照片及一个换脸App,分别就一张”眨眨眼”的照片和一段”活体检测”场景模拟,成功“攻破”人脸识别系统。 一般业内人士看到的是主持人手里所持人脸识别App的技术漏洞;但对于普通观众来说,他们看到的是一个不甚熟悉的高科技技术应用背后的“巨大风险”——人脸识别技术怎么会被破解?为什么一个换脸App软件就能轻松换脸?它会不会分分钟“掏空”我的账户……经由央视这个大众平台一放大,即使只是出于提醒消费
标准UVC设备,兼容性强,自带人脸识别算法,支持活体识别,支持1:1比对,不借助外部设备即可进行人脸识别,输出人脸属性值。支持活体识别,有效防止照片、视频和面具等假体攻击。
与动态活体检测不同,静态活体检测是指判断静态图片是真实客户行为还是二次翻拍,用户不需要通过唇语或摇头眨眼等动作来识别。一般应用在防攻击不高的场景中。而动态活体检测是指通过指示用户做出指定动作动作(读数,眨眼,左右摇头等),验证用户是否为真实活体本人在执行当前的操作。
当下正值新冠肺炎(COVID-19)肆虐全球之际,戴口罩成为了全民阻断病毒传播的最佳方式。然而在人脸部分遮挡或恶劣光照条件下,用户人脸识别或人脸认证的合法访问常常提示活体检测失败,甚至根本检测不到人脸。这是由于目前基于RGB等2D空间的主流活体检测方案未考虑光照、遮挡等干扰因素对于检测的影响,而且存在计算量大的缺点。而数迹智能团队研发的3D SmartToF活体检测方案则可以有效解决此问题。那么什么是活体检测?什么又是3D活体检测?以及怎么实现恶劣环境(如人脸遮挡、恶劣光照等)与人脸多姿态变化(如侧脸、表情等)应用场景下的活体检测呢?本文将会围绕这些问题,介绍数迹智能的最新成果——基于ToF的3D活体检测算法。
作者 | 鸽子,Donna 人脸识别技术又被玩出新高度了。 不是手机开锁,不是进出考勤,而是替代你的身份证! 这两天,营长的朋友圈开始被一个炸裂新闻刷屏: 12月25日,由由广州市公安局南沙区分局、腾讯、建设银行等10余家单位发起的“微警云联盟”在广州南沙成立。 联盟成员单位共同签署合作框架协议,并且现场签发全国首张微信身份证“网证”。 微信身份证啊,这真是人脸识别玩得最狠的一次了。 图片来源:广州日报 据悉,微信身份证“网证”仍在广东省试点试行,预计2018年1月再推向全国。 (营长说说:以后
随着生物识别技术在移动支付领域的拓展,如今,已有支付宝“刷脸支付”在位于杭州市的肯德基KPRO餐厅正式商用。这之前,京东线下的京东之家体验店已经开始内测“刷脸支付”功能。而在更早的4月份,百度就把刷脸支付搬进了自家食堂。 人脸识别技术的应用场景在不断地扩展,iPhoneX就把Face ID嵌入手机解锁,但是相较于App登录、火车站安检等应用场景,刷脸支付尚不能大规模推广。刷脸支付的商用,还需监管部门对于该技术的安全性评估。 ▌活体检测是技术支撑 ---- 记者在旷视科技公司官网了解到,支付宝推出的刷脸
相信大家对人脸身份认证已经司空见惯了,比如生活中的人脸支付、身份校验、金融认证等等,但是人脸识别技术面临着多种欺诈手段,如照片、换脸、面具等。如果被恶意复制,将会给个人、集体或者社会带来很大的麻烦和威胁。
领取专属 10元无门槛券
手把手带您无忧上云