首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

OpenCV人脸别的原理 .

然而,假如你尝试这样简单地从一张普通图片直接进行人脸别的话,你将会至少损失10%的准确率! 在一个人脸识别系统中,应用多种预处理技术对将要识别的图片进行标准化处理是极其重要的。...我们使用“主元分析”把你的200张训练图片转换成一个代表这些训练图片主要区别的“特征脸”集。首先它将会通过获取每个像素的平均值,生成这些图片的“平均人脸图片”。然后特征脸将会与“平均人脸”比较。...训练图片 创建一个人脸识别数据库,就是训练一个列出图片文件和每个文件代表的人的文本文件,形成一个facedata.xml“文件。...,特征值 识别的过程 1....平均人脸,特征脸和特征值(比率)使用函数“loadTrainingData()” 从人脸识别数据库文件(the face recognition database fil)“facedata.xml”载入

1.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸别的可解释性

    作者丨孙裕道 编辑丨极市平台 导读 人脸别的可解释性是深度学习领域中的一个很大挑战,当前的方法通常缺乏网络比较和量化可解释结果的真相。...自然深度学习中的很重要领域人脸别的可解释性也是一个很大的挑战,当前在这方面探索的方法有网络注意力、网络解剖或综合语言解释,然而,缺乏网络比较和量化可解释结果的真相,尤其是在人脸识别中近亲或近亲之间的差异很微妙...论文贡献 该论文的贡献可以归结为如下三点,分别如下所示 XFR baseline:作者基于五种网络注意力算法为XFR(人脸别的可解释性)提供了baseline,并在三个用于人脸别的公开深度卷积网络上进行了评估...模型介绍 人脸别的可解释性(XFR) 该论文的创新点可能是从Facenet中得到一定的灵感。XFR的目的是解释人脸图像之间的匹配的内在关系。...和probe(p)的三个编码向量,其中损失函数如下所示: 这里使用编码向量之间的欧几里德距离的平方来捕获相似性,使得当从probe到mate的距离小(相似性高)并且从probe到nonmate的距离(

    2.5K20

    人脸到底是怎样识别的

    不讲废话,直接看技术: 人脸识别流程 人脸识别技术原理简单来讲主要是三步骤:一是建立一个包含大批量人脸图像的数据库,二是通过各种方式来获得当前要进行识别的目标人脸图像,三是将目标人脸图像与数据库中既有的人脸图像进行比对和筛选...活体鉴别: 生物特征识别的共同问题之一就是要区别该信号是否来自于真正的生物体,比如,指纹识别系统需要区别带识别的指纹是来自于人的手指还是指纹手套,人脸识别系统所采集到的人脸图像,是来自于真实的人脸还是含有人脸的照片...,眉毛的长度等,其次还计算每个特征与之相对应关系,与人脸数据库中已知人脸对应特征信息来做比较,最后得出最佳的匹配人脸。...Deep ID2 通过学习非线性特征变换使类内变化达到最小,而同时使不同身份的人脸图像间的距离保持 恒定,超过了目前所有领先的深度学习和非深度学习算法在 LFW 数据库上的识别率以及人类在该数据库的识别率...人脸识别三经典算法: 特征脸法(Eigenface) 征脸技术是近期发展起来的用于人脸或者一般性刚体识别以及其它涉及到人脸处理的一种方法。

    2.6K30

    人脸检测与识别的趋势和分析

    缺点:而在复杂背景中,AdaBoost人脸检测算法容易受到复杂环境的影响,导致检测结果并不稳定,极易将类似人脸区域误检为人脸,误检率较高。...基于特征方法的人脸检测 基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。...① 边缘和形状特征:人脸人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、嘴唇轮廓等都可以近似为常见的几何单元; ② 纹理特征:人脸具有特定的纹理特征,纹理是在图上表现为灰度或颜色分布的某种规律性...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...对于待检测的人脸图像,分别计算眼睛,鼻子,嘴等特征同人脸模板的相关性,由相关性的大小来判断是否存在人脸

    1.2K20

    人脸检测与识别的趋势和分析

    缺点:而在复杂背景中,AdaBoost人脸检测算法容易受到复杂环境的影响,导致检测结果并不稳定,极易将类似人脸区域误检为人脸,误检率较高。...基于特征方法的人脸检测 基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...对于待检测的人脸图像,分别计算眼睛,鼻子,嘴等特征同人脸模板的相关性,由相关性的大小来判断是否存在人脸。...下期我将带大家一起去回顾近几年人脸检测&识别的新框架,及创新点、优缺点,并附上开源代码,希望大家都可以动手自己去实践。

    1.2K50

    金融级别的人脸识别支付?

    安卓终于再一次追平了苹果”,并总结出“攻克了几乎是行业性的四难题”: 1,摄像头信息传输安全解决方案。 2,整合安全计算能力。 3,3D活检算法评估体系。 4,安卓生态协作的经验积累。...这样重大的事情,安智客急不可耐地想进行学习了解,这里有三个关键词:安全、人脸识别、支付,安全是整体的安全方案,达到金融级别的安全,人脸识别是指包括算法在内的软硬件,支付就是基于IFAA技术方案的人脸识别进行支付...最新版《iOS 11安全白皮书》中描述了人脸别的安全: 原深感摄像头会在您通过提起或点击屏幕来唤醒iPhone X时,或支持的应用程序请求进行人脸ID验证时自动查找您的脸部。...什么是金融级别的人脸识别支付? 首先从各种人脸识别安全标准中去了解什么是金融级别?...对于人脸识别安全来说,类似某些设备厂商常常宣称其设备是电信级设备,意指设备高可靠性一样,对于安全,我们知道金融级别的安全意味着高安全。

    3.2K20

    人脸检测与识别的趋势和分析

    缺点:而在复杂背景中,AdaBoost人脸检测算法容易受到复杂环境的影响,导致检测结果并不稳定,极易将类似人脸区域误检为人脸,误检率较高。...基于特征方法的人脸检测 基于特征的方法实质就是利用人脸的等先验知识导出的规则进行人脸检测。...① 边缘和形状特征:人脸人脸器官具有典型的边缘和形状特征,如人脸轮廓、眼睑轮廓、虹膜轮廓、嘴唇轮廓等都可以近似为常见的几何单元; ② 纹理特征:人脸具有特定的纹理特征,纹理是在图上表现为灰度或颜色分布的某种规律性...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...对于待检测的人脸图像,分别计算眼睛,鼻子,嘴等特征同人脸模板的相关性,由相关性的大小来判断是否存在人脸

    1.3K20

    人脸检测与识别的趋势和分析

    缺点:而在复杂背景中,AdaBoost人脸检测算法容易受到复杂环境的影响,导致检测结果并不稳定,极易将类似人脸区域误检为人脸,误检率较高。...,这种规律性在不同类别的纹理中有其不同特点; ③ 颜色特征:人脸的皮肤颜色是人脸表面最为显著的特征之一,目前主要有RGB,HSV,YCbCr,YIQ,HIS等彩色空间模型被用来表示人脸的肤色,从而进行基于颜色信息的人脸检测方法的研究...对于待检测的人脸图像,分别计算眼睛,鼻子,嘴等特征同人脸模板的相关性,由相关性的大小来判断是否存在人脸。...下面我来给大家提供一些公开的数据库网址: ■Annotated Database (Hand, Meat, LV Cardiac, IMM face) (Active Appearance Models...■Yale Face Database B (http://cvc.yale.edu/projects/yalefaces/yalefaces.html) 最后我附上我近期做的效果图,是基于视频中人脸检测与识别的

    1.7K120

    【前沿】见人面,TensorFlow实现人脸性别年龄识别

    【导读】近期,浙江大学学生Boyuan Jiang使用TensorFlow实现了一个人脸年龄和性别识别的工具,首先使用dlib来检测和对齐图片中的人脸,然后使用CNN深度网络来估计年龄和性别。...TensorFlow实现的人脸性别/年龄识别 这是一个人脸年龄和性别识别的TensorFlow工具,首先使用dlib来检测和对齐图片中的人脸,然后使用CNN深度网络来估计年龄和性别。...如下所示,该项目可以同时估计一张照片中的多个人脸 。 ? ? 安装python依赖包 本项目需要以下依赖包,已经在CenotOS7系统上的Python2.7.14环境中测试过。...因为我们首先需要进行非常耗时的人脸检测和对齐步棸,所以我们建议使用尽可能多的核心数。Intel E5-2667 v4 带有 32 个核心运行完需要大概50分钟。

    5.7K60

    实现基于人脸别的门禁管理系统【源码】

    项目介绍 基于人脸别的门禁管理系统 (Python+Django+RESTframework+JsonWebToken+Redis+Dlib) 该项目为宿舍门禁系统管理,并额外加入宿舍管理、水电费管理...Django为后端、H5/CSS/JS为前端、MySQL为后端数据库、Redis为缓存、Dlib为人脸识别程序库。 该项目可作为个人学校毕业设计使用,未考虑生产环境,后续开发随心。...食用方法 1、首先下载项目源码文件(获取方法在本文结尾处) 2、运行MySQL和Redis,并在setting.py文件中配置数据库链接信息。...MySQL数据库使用5.7.27开发,建议使用相同版本(应该mysqlclient有向上兼容 项目自带Windows系统调试用Redis-x64-3.2.100,默认监听127.0.0.1,6379端口...像运行正常的Django项目一样使用指令) python manage.py makemigrations python manage.py migrate 5、导入初始系统设置数据 数据文件位置:/数据库

    3.5K50

    旧金山,全球首个禁用人脸别的城市

    旧金山市颁布的新条例决定禁止全市 53 个部门使用人脸识别技术,其中就包括旧金山警察局,该警局当前并没有使用此类人脸识别技术,但在2013-2017年间进行了相关技术测试。这项条例将于一个月后生效。...早期人脸识别规则 近年来,得益于深度学习的普及,人脸识别技术取得了显著提升。典型的人脸识别系统对面部特征进行分析,之后与数据集中的标记面孔(labeled face)进行比较。...人们担心,这些人脸识别系统在正确识别有色人种和女性方面并没有那么有效。其中一个原因是用于训练软件的数据集可能更多地来自男性和白人。 ? 在英伟达GPU技术大会上展示的执法人脸识别系统。...该组织的技术和民权律师 Matt Cagle 表示,人脸识别系统引发的一系列问题意味着这项条例将避免人脸识别对社会成员造成的伤害。他还希望看到其他城市效仿旧金山的做法。...尽管 Stop Crime SF 看到了现有人脸识别技术的缺陷,但该组织也担心完全禁用人脸识别会衍生其它问题。他们相信,暂停使用该技术或许是一个更好的选择,这样技术改进之后还能重新启用。

    1.1K20

    实战:人脸别的Arcface实现 | CSDN博文精选

    首先准备需要训练的人脸数据 并按照每个人一个文件夹的形式将人脸照片保存起来,为了使人脸更符合亚洲人的特征应该尽量多的采用亚洲人来你的图片训练。...每个文件夹中最少要有两张或者是两张以上的人脸照片,也就是说训练集中每个人脸最少存在两张。图片保存形式如下图所示: ? 2....将人脸数据中的人脸部分提取出来并对其 代码中假定的是人脸的数据已经剪裁并对齐,但是在实际的应用中一般拿到的都是普通的人脸的照片,需要将人脸照片进行剪裁并将不是正脸对着正前方的人脸照片仿射变换成正脸面对的照片.../ 以dlib中的cnn为例采用下面代码可以将文件夹中的人脸全部对齐并重新保存在另外一个文件夹中。...接下来就是修改config.py文件中的配置 backbone = 'resnet50' #选用的网络结构 classify = 'softmax' num_classes = 10001 #等于人脸中类别的个数

    8.4K60

    【CVPR 2021】通过GAN提升人脸别的遗留难题

    1 A 3D GAN for Improved Large-pose Facial Recognition 基于端到端的深度卷积神经网络进行人脸识别,依赖于大型人脸数据集。...Age-Invariant Face Recognition Meets Face Age Synthesis: A Multi-Task Learning Framework 为了最大程度地减少年龄变化对人脸别的影响...,称为人脸年龄生成(face age synthesis,FAS);但是,前者缺乏用于模型解释的视觉结果,而后者则的生成效果可能有影响下游识别的伪影。...本文提出一个统一的多任务框架MTLFace来共同处理人脸识别和生成任务,它可以学习与年龄不变的身份表征,同时完成人脸合成。...其中,与实现组级FAS的常规one-hot编码相反,提出了一种新颖的以身份作为条件的模块来实现身份级别的FAS,并采用权重共享策略来改善合成人脸的年龄平滑度。

    1.2K50

    九十五、通过opencv制作人脸别的窗口

    @Author:Runsen 人脸检测,看似要使用深度学习,觉得很高大牛逼,其实通过opencv就可以制作人脸别的窗口。...今天,Runsen教大家将构建一个简单的Python脚本来处理图像中的人脸,使在OpenCV库中两种方法 。...使用Haar级联进行人脸检测 基于haar特征的级联分类器的,OpenCV已经为我们提供了一些分类器参数,因此我们无需训练任何模型,直接使用。...在检测图像中的面部之前,我们首先需要将图像转换为灰度图: image_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 下面,因为要初始化人脸识别器(默认的人脸...import cv2 #创建新的cam对象 cap = cv2.VideoCapture(0) #初始化人脸识别器(默认的人脸haar级联) face_cascade = cv2.CascadeClassifier

    69140

    基于 AdaFace 提供适合低质量人脸别的人脸特征向量输出服务

    所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》----2简单介绍通过 AdaFace 提取人脸特征向量服务,项目来自:https...://github.com/mk-minchul/AdaFace拿到人脸特征向量可以用于获取人脸相似度,通过两个人脸向量的余弦相似度得分AdaFace 简单介绍低质量人脸数据集中的识别具有挑战性,因为人脸属性被模糊和降级...基于裕量的损失函数的进步提高了嵌入空间中人脸的可辨别性。此外,以前的研究已经研究了适应性损失的影响,以更加重视错误分类的(硬)例子。在这项工作中,我们介绍了损失函数自适应性的另一个方面,即图像质量。...大量的实验表明,我们的方法AdaFace在四个数据集(IJB-B,IJB-C,IJB-S和TinyFace)上提高了最先进的(SoTA)的人脸识别性能。...关于 AdaFace 更多信息见: https://github.com/mk-minchul/AdaFace详细信息可以看 AdaFace 的项目,或者我之前的文章,有一个结合作者 代码写的完整的人脸别的

    42240
    领券