首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

opencv 人脸识别 (二)训练识别

上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,…类别号),本文做训练识别。...为了识别,首先将人脸训练数据 转为灰度、对齐、归一化,再放入分类器(EigenFaceRecognizer),最后用训练出的model进行predict。...—————————————– 环境:vs2010+opencv 2.4.6.0 特征:eigenface Input:一个人脸数据库,15个人,每人20个样本(左右)。...Output:人脸检测,并识别出每张检测到的人脸。 —————————————– 1....为训练数据预处理( 转为灰度、对齐、归一化 ) 转为灰度和对齐是后面做训练时EigenFaceRecognizer的要求; 归一化是防止光照带来的影响 在上一篇的 2.2 Prehelper.cpp文件中加入函数

1.3K30

opencv人脸识别训练「建议收藏」

一开始我运用人脸训练出一个xml文件,后来新增人脸时候需要将新人继续拿来训练,需要将训练的特征信息加在原来xml文件里面。如果程序不关闭是可以将新人特征信息加到xml文件里的。...比如,原来的xml文件为face.xml;现在采集了一些人脸,需要将这些人脸的特征信息提取加入到face.cml;然后下次load这个face.xml进行人脸识别。...现在就是怎么将这些人脸加入原来的xml文件呢?...这个是全局变量定义: static vector images;//头像集 static vector labels;//标签集 训练: model->load(“face0...train_csv图片路径 loadFaceImg(train_csv, images, labels); stringstream s; s<<num; cout<<“加载”+s.str()+”个人脸图片完成

60230
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    人脸识别(二)——训练分类器

    上一篇简单整理了下人脸识别的相关基础知识,这一篇将着重介绍利用pencv(2.4.9)已有的模型进行分类器训练。...一、关于ORL人脸数据库 ORL是一个40个人,每人采取10张人脸头像构成的一个人脸数据库,尺寸全部为92*112。分为40个文件夹,即每个文件夹中包含有10张人脸照片,为pgm格式。 ?...在正式开始实践前,先做了个小测试,即用较少的人脸数据进行训练识别测试。做小测试的时候,我是首先从ORL中选择了2个人的各自5张图片和自己的5张图片,共3个人15张人脸图片进行训练。...在之后就是模型的训练了,opencv自带的Facerecognizer类。其中有人脸识别接下来会用到的几个函数(train、load、save、predict)。 ?...但是整体的流程和上面小测试是相同的,这里主要介绍一种csv文件的使用方法: 我们需要读取人脸人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。

    2.4K50

    人脸识别(二)——训练分类器

    这是关于人脸的第②篇原创!(源码在第三篇) 上一篇简单整理了下人脸识别的相关基础知识,这一篇将着重介绍利用pencv(2.4.9)已有的模型进行分类器训练。...一、关于ORL人脸数据库 ORL是一个40个人,每人采取10张人脸头像构成的一个人脸数据库,尺寸全部为92*112。分为40个文件夹,即每个文件夹中包含有10张人脸照片,为pgm格式。 ?...在正式开始实践前,先做了个小测试,即用较少的人脸数据进行训练识别测试。做小测试的时候,我是首先从ORL中选择了2个人的各自5张图片和自己的5张图片,共3个人15张人脸图片进行训练。...在之后就是模型的训练了,opencv自带的Facerecognizer类。其中有人脸识别接下来会用到的几个函数(train、load、save、predict)。 ?...但是整体的流程和上面小测试是相同的,这里主要介绍一种csv文件的使用方法: 我们需要读取人脸人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。

    2.9K90

    自制人脸数据,利用keras库训练人脸识别模型

    机器学习也是如此,要想识别出这张人脸属于谁,我们同样需要大量的本人和其他人的人脸数据,然后将这些数据输入Tensorflow这样的深度学习(深度学习指的是深度神经网络学习,乃机器学习分支之一)框架,利用深度学习框架建立属于我们自己的人脸分类模型...日本程序员提供的源码利用了keras这个深度学习库来训练自己的人脸识别模型。keras是一个上层的神经网络学习库,纯python编写,被集成进了Tensorflow和Theano这样的深度学习框架。...同时,为了验证其它深度学习库的效率和准确率,当然也为了满足我的好奇心,我还使用了Theano,利用CNN——卷积神经网络来训练我的人脸识别模型。...前面已经说过,OpenCV对人脸识别也不是100%准确,因此,我们截取的人脸图像中会有些不合格的,比如误把灯笼当人脸存下来了或者人脸图像很模糊。...利用keras库训练人脸识别模型 CNN擅长图像处理,keras库的tensorflow版亦支持此种网络模型,万事俱备,就放开手做吧。

    3.3K30

    OpenCV人脸识别之二:模型训练

    本系列人脸识别文章用的是opencv2,最新版的opencv3.2的代码请参考文章: OpenCV之识别自己的脸——C++源码放送(请在上一篇文章末尾查看) 在该系列第一篇《OpenCV人脸识别之一:数据收集和预处理...》文章中,已经下载了ORL人脸数据库,并且为了识别自己的人脸写了一个拍照程序自拍。...之后对拍的照片进行人脸识别和提取,最后我们得到了一个包含自己的人脸照片的文件夹s41。在博客的最后我们提到了一个非常重要的文件——at.txt。...1、csv文件的生成 当我们写人脸模型的训练程序的时候,我们需要读取人脸人脸对应的标签。直接在数据库中读取显然是低效的。所以我们用csv文件读取。...opencv中所有的人脸识别模型都是来源于这个类,这个类为所有人脸识别算法提供了一种通用的接口。文档里的一个小段包含了我们接下来要用到的几个函数: ?

    5.4K60

    Python+OpenCV实现AI人脸识别身份认证系统(3)—训练人脸识别模型

    目录 案例引入 本节项目 ---- 最近有小伙伴们一直在催本项目的进度,好吧,今晚熬夜加班编写,在上一节中,实现了人脸数据的采集,在本节中将对采集的人脸数据进行训练,生成识别模型。...案例引入 首先简要讲解数据集训练生成模型的原理,这里使用的是LBPH算法,在OpenCV模块中已经有内嵌的方法cv2.face.LBPHFaceRecognizer_create(),为了方便小伙伴们读懂之后的代码...,在这里先举一个简单的人脸模型训练的小案例。...第一步:采集人脸数据,网络上有许多案例Demo,不再赘述,代码如下: import cv2 detector = cv2.CascadeClassifier('C:/Users/Administrator

    2.3K30

    【玩转GPU】基于GPU的人脸识别模型训练实践

    在这些应用中,人脸识别是一个非常典型且广泛应用的场景。本文将分享基于GPU进行人脸识别模型训练的实践经验。一、人脸识别简介人脸识别是指使用计算机视觉和机器学习算法自动识别图像或视频流中的人脸的技术。...其基本流程包括人脸检测、特征提取、特征匹配几个阶段。...二、构建人脸识别模型收集面部图像数据集首先需要收集大量不同人脸图像作为训练数据,我使用了开源的人脸数据集,包含了500,000张图片和5,000个身份。...数据预处理包括检测脸部区域、图像均衡化、图像缩放等,得到归一化后的人脸图像。...图片四、总结通过上述实践,我对GPU加速深度学习训练有了更直观的理解。GPU强大的并行计算能力可以极大缩短模型训练时间。要发挥GPU最大性能,需要从模型、算法和部署等各个方面进行优化。此

    93260

    人脸图像识别(python人脸识别技术)

    python人脸识别 人脸识别的崛起 什么是人脸识别 人脸识别是将采集到的数据信息,根据人脸特征信息进行比对,从而辨识身份的技术。...人脸识别技术的应用和发展 谈到应用,我的第一映像就是手机上的人脸识别解锁,目前在学校公寓里面也有人脸识别的机器,我记得首先是收集了我们学生们的照片,应该是存入数据库的,我们学生的信息,包括学号,以及所在系等等...,学校都是存入数据库的。...学生在进入公寓时需要进行人脸识别,机器会进行识别。系统有两种识别方式,一是识别人像,二是进行刷卡,刷卡会将自己的信息读取,会与数据库的信息对比,也是一种识别的方式。...# 1.人脸数据 # 2.算法 # 3.建立模型 # 4.训练模型 # 5.测试模型 # 6.上线使用 # 1读取 face_image = face_recognition.load_image_file

    15.3K60

    Android人脸识别识别人脸特征

    本文我们接着来看看,在完成了人脸注册之后我们该如何识别出用户的人脸特征,从而通过人脸识别获取用户信息。...人脸识别的全部流程集成在官方 Demo 的 DetecterActivity 文件中。...还是来了解几个概念 人脸追踪 FT 年龄检测 Age 性别检测 Gender 其中人脸追踪 FT 与人脸检测 FD 功能基本一致(甚至代码基本都是相同的),Age 引擎用于识别年龄,Gender 引擎用于识别性别...识别流程 整体上比人脸注册还要简单,官方提供了很好的封装供我们使用,我们来看看流程。...流程是这样的 提取图片中的人脸 → 与我们已经注册过得特征集合进行特征匹配 → 匹配程度最高的作为最终识别结果 这一过程是放在一个子线程中运行的,代码如下: //人脸识别线程 class FRAbsLoop

    18.9K30

    基于Triplet loss函数训练人脸识别深度网络(Open Face)

    首先resize为如下尺寸: 96*96 输入Image(需要100M-200M张图片) Face detection(检测人脸)、Preprocessing(尺度归一、灰度校正、每一张脸都进行一次仿射变换...图1 模型训练结构 Triplet loss结构:一组三个图像:一个标准图像,一个正样本(与标准同一人),一个负样本(不同的人) 通过损失公式来调节整个网络,公式如下,思想将在文末介绍: ?...在FaceNet中,作者利用该方法与Zeiler&Fergus以及GoogLeNet中提出的网络结构相结合,实现人脸识别,达到了很高的精度。...为了验证TripletLoss的有效性,我们在WebFace数据库上利用TripletLoss训练了另一种深度卷积网来实现人脸验证,WebFace中有该网络的结构描述。...在得到TripletLoss训练好的网络后,我们利用Joint-Bayesian方法对网络最后一层提取的特征进行学习,得到相似度估计模型。

    2.1K60

    JavaCV人脸识别三部曲之二:训练

    欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是《JavaCV人脸识别三部曲》的第二篇...\18\001\woman: 照片准备好,并且每张照片的身份都已确定,本篇要做的就是用上述照片生成模型文件,今后新的人脸就可以中这个模型来检查了 关于训练,可以用下图来表示,一共六张照片两个类别,...; } // 每当遍历完一个目录,才会将类别加一 kindIndex++; } // 实例化人脸识别类...FisherFaceRecognizer,现在的训练和下一篇的识别都用这个类 执行 运行main方法,待执行完成后,如下图,可见目录E:\temp\202112\18\001下已经生成模型文件faceRecognizer.xml...: 至此,本篇任务已完成,下一篇进入终极实战,用本篇训练的模型识别摄像头中的人脸,并把识别结果展示在预览页面上; 源码下载 《JavaCV的摄像头实战》的完整源码可在GitHub下载到,地址和链接信息如下表所示

    75030

    树莓派人脸识别实际应用:人脸识别门禁

    在上一篇文章树莓派调用百度人脸识别API实现人脸识别,我们完成了树莓派人脸识别的基础环境配置,人脸识别功能也测试成功了,现在我们做一个小小的案例来实际应用一下,我们想树莓派人脸识别成功后,发送蓝牙串口数据给...import base64 import time import bluetooth from bluetooth_test import bt_open,servo_init,bt_close #百度人脸识别...: f = open('faceimage.jpg','rb') img = base64.b64encode(f.read()) return img #上传到百度api进行人脸检测...def go_api(image): result = client.search(str(image, 'utf-8'), IMAGE_TYPE, GROUP);#在百度云人脸库中寻找有没有匹配的人脸...f.close() return 1 if result['error_msg'] == 'pic not has face': print('检测不到人脸

    12.8K11
    领券