首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

中科院百人计划专家深度解析:银行业务光凭“刷脸”真的靠谱吗?

雷锋网按:本文内容来自云从科技创始人、中国科学院百人计划周曦博士在硬创公开课的分享。在未改变原意的基础上进行了编辑整理。 明明可以靠脸吃饭”这句话不再只是一个网络段子,随着人脸识别技术的普及,不光可以靠“刷脸”支付吃喝玩乐的花费,现在连银行办业务都可以“刷脸”了。 最近两年,国内各家中小银行和四大行地方分行已经陆续将人脸识别技术用于日常业务,前几日,四大行中的农行更是首先在全国范围应用人脸识别技术。 但是,银行业务光凭“刷脸”真的靠谱吗?本期公开课特意邀请到云从科技创始人、图像识别领域权威周曦博士为大家答疑

06

重磅丨直击百度大脑VS最强大脑王峰:跟人类比人脸识别,这卖相远不如跟人类比下棋

不得不说,江苏卫视选择在一个很好的时机播出了这段早已录制好的人机大战节目。 AlphaGo 本周刚以 Master 的名字在围棋赛中横扫中日韩高手斩获 60 连胜后,在昨日,江苏卫视播出的节目最强大脑第四季中,百度的人工智能机器人“小度”也在中国版“人机大战”中胜出。“小度”首战告捷:在跨年龄人脸识别任务上,以 3:2 的比分险胜“最强大脑”代表王峰。 有人将这场比赛称之为 “中国电视史上首次人机对战”的比赛。但平心而论,这场比拼在科技领域的意义并不大。 找错了对手 首先,选择和小度对战的王峰并不是人脸

05
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    重磅干货:AI场景的价值体现——视觉 AI 技术如何落地?

    随着AI时代的移动技术革新大会开幕邻近,越来越多的行业人士对本届大会即将分享的行业干货保持着高度关注,本期主办方采访到了【基于AI的开发实践专场】演讲嘉宾杨帆先生(商汤科技联合创始人、副总裁,EGO 北京分会会员),就AI场景的价值体现与落地进行深度剖析。 以下内容是对杨帆先生的部分采访整理。 “AI更大的价值在于跟不同的行业结合” 杨帆在计算机视觉技术领域沉浸多年,在微软任职期间,他主要从事计算机视觉、计算机图形学等领域的新技术孵化工作,包括人脸识别、图像物体识别、人像三维重建等;杨帆认为,AI技术并

    06

    清华出品 | 人脸识别最全知识图谱

    自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。

    04

    清华大学发布:人脸识别最全知识图谱

    自20世纪下半叶,计算机视觉技术逐渐地发展壮大。同时,伴随着数字图像相关的软硬件技术在人们生活中的广泛使用,数字图像已经成为当代社会信息来源的重要构成因素,各种图像处理与分析的需求和应用也不断促使该技术的革新。计算机视觉技术的应用十分广泛。数字图像检索管理、医学影像分析、智能安检、人机交互等领域都有计算机视觉技术的涉足。该技术是人工智能技术的重要组成部分,也是当今计算机科学研究的前沿领域。经过近年的不断发展,已逐步形成一套以数字信号处理技术。计算机图形图像、信息论和语义学相互结合的综合性技术,并具有较强的边缘性和学科交叉性。其中,人脸检测与识别当前图像处理、模式识别和计算机视觉内的一个热门研究课题, 也是目前生物特征识别中最受人们关注的一个分支。

    03

    人脸识别VS虹膜识别,智能机器人识人技能大比拼!

    也许对于你来说,区分你自己、邻居和同事是一件轻松又随意的事情。其实,只有只有少数的动物和人能通过镜子测试,即把动物置于镜子面前,看它们能否意识到镜子里的生物就是自己。令人意外的是初生儿、猫和狗都不能认识镜中的自己。看来识别自我并没有我们想象中那么简单,但是在2012年的时候,没有大脑神经的机器人却能意识到这点。 据悉,耶鲁大学曾研发出一款思考型机器人——Nico,它知道通过照镜子来观察自己的手臂以及全身,认识自我。 不过对于机器人而言,比起认识自我,认识他人才是更为重要的能力,特别是用于进行人机交互的时候。

    04

    深入浅出人脸识别技术

    在深度学习出现后,人脸识别技术才真正有了可用性。这是因为之前的机器学习技术中,难以从图片中取出合适的特征值。轮廓?颜色?眼睛?如此多的面孔,且随着年纪、光线、拍摄角度、气色、表情、化妆、佩饰挂件等等的不同,同一个人的面孔照片在照片象素层面上差别很大,凭借专家们的经验与试错难以取出准确率较高的特征值,自然也没法对这些特征值进一步分类。深度学习的最大优势在于由训练算法自行调整参数权重,构造出一个准确率较高的f(x)函数,给定一张照片则可以获取到特征值,进而再归类。本文中笔者试图用通俗的语言探讨人脸识别技术,首先概述人脸识别技术,接着探讨深度学习有效的原因以及梯度下降为什么可以训练出合适的权重参数,最后描述基于CNN卷积神经网络的人脸识别。

    06
    领券