做一名主要从事OLAP内核研发,对现有湖仓理解做个总结;欢迎批评/指正/讨论 1 为什么湖仓一体这么热: 湖、仓定义这里就不赘述了,大家可以去搜 我理解就是各类数据爆发的公司当前数据平台架构遇到了各类各样的问题...,寻求一个适配公司、平台的数据架构,一站式解决,但是大家对湖、仓本质的理解可能都不太一样,那又怎么谈湖仓一体呢。...我也一样,理解一定是片面的,我吸收的内容和我个人脑海呈现的画面也是不一样的,只能尽自己所能,表达清楚对湖仓一体的理解,和面对什么样的业务背景下,我们应该如何围绕我们的平台去做自己的湖仓一体。...长时间内:大概率还是 olap + 数仓 + 数据湖,但是他们之间又存在着千变万化,比如Trino自身是一个查询引擎,但是StarRocks却将其按照一个功能来发展,交互发生了变换,产品也就发生了变化。...view,进行冷热数据的聚合;达到数据的一个统一视图,即仓上挂湖,冷热分层; 4 从真正意识上的湖仓一体,那就是云原生了: One Data:同时支持离线处理和在线分离,解决数据的一致性和实效性;即数据可以不开源
问题导读 1.什么是数据仓库、数据集市和数据湖? 2.湖仓一体化为什么诞生? 3.湖仓一体化是什么? 4.湖仓一体化的好处是什么?...那么接下来我们就来了解一下湖仓一体化的基本概念吧。 1.什么是数据仓库、数据集市和数据湖?...一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 3.湖仓一体化是什么?...4.湖仓一体化的好处是什么? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。
一、什么是数据湖? 数据湖是保存大量原始格式数据的中心位置。与以文件或文件夹形式存储数据的分层数据仓库相比,数据湖采用扁平化架构和对象存储方式来存储数据。...五、汽车之家湖仓一体架构实践案例分享 以下文字来源DataFunTalk,介绍了如何基于Apache Iceberg构建湖仓一体架构,将数据可见性提升至分钟级;从多维分析的角度来探讨引入Apache Iceberg...02 基于 Iceberg 的湖仓一体架构实践 湖仓一体的意义就是说我不需要看见湖和仓,数据有着打通的元数据的格式,它可以自由的流动,也可以对接上层多样化的计算生态。 ——贾扬清 1....总结 通过对湖仓一体、流批融合的探索,我们分别做了总结。 湖仓一体 Iceberg 支持 Hive Metastore; 总体使用上与 Hive 表类似:相同数据格式、相同的计算引擎。...架构收益 - 准实时数仓 上方也提到了,我们支持准实时的入仓和分析,相当于是为后续的准实时数仓建设提供了基础的架构验证。准实时数仓的优势是一次开发、口径统一、统一存储,是真正的批流一体。
本文主要介绍为了应对以上挑战,我们在湖仓一体方向上的一些探索和实践。 Why?为什么需要湖仓一体 在讨论这个问题前,我们可能首先要明确两个概念:什么是数据湖?什么是数据仓库?...湖仓一体是近两年大数据一个非常热门的方向,如何在同一套技术架构上同时保持湖的灵活性和仓的高效性是其中的关键。...B站的湖仓一体实践 对于B站的湖仓一体架构,我们想要解决的问题主要有两个:一是鉴于从Hive表出仓到外部系统(ClickHouse、HBase、ES等)带来的复杂性和存储开发等额外代价,尽量减少这种场景出仓的必要性...我们基于Iceberg构建了我们的湖仓一体架构,在具体介绍B站的湖仓一体架构之前,我觉得有必要先讨论清楚两个问题,为什么Iceberg可以构建湖仓一体架构,以及我们为什么选择Iceberg?...1.为什么基于Iceberg可以构建湖仓一体架构?
此过程不用执行扫描整个源表的查询 Hudi的优势 •HDFS中的可伸缩性限制•Hadoop中数据的快速呈现•支持对于现有数据的更新和删除•快速的ETL和建模 以上内容主要引用于:《Apache Hudi 详解》 新架构与湖仓一体...通过湖仓一体、流批一体,准实时场景下做到了:数据同源、同计算引擎、同存储、同计算口径。...数据的时效性可以到分钟级,能很好的满足业务准实时数仓的需求。下面是架构图: MySQL 数据通过 Flink CDC 进入到 Kafka。...本节内容,引用自:《37 手游基于 Flink CDC + Hudi 湖仓一体方案实践》 最佳实践 版本搭配 版本选择,这个问题可能会成为困扰大家的第一个绊脚石,下面是hudi中文社区推荐的版本适配:...Flink + Hudi 仓湖一体化方案的原型构建完成,感谢大家看到这里,如果对你有点点帮助的话,希望点个关注,转发。
其次,您可以订阅数据湖仓服务,例如软件即服务 (SaaS)。 本文将深入探讨这两种类型的数据湖仓部署的特征,介绍 Cloudera 新的一体化湖仓产品 CDP One 的优势。...PaaS 数据湖仓 平台即服务 (PaaS) 数据湖仓是在您的云帐户中配置的数据湖仓的虚拟化部署。Cloudera 数据平台 (CDP) 公共云是 PaaS 数据湖仓的一个示例。...SaaS 数据湖仓 软件即服务 (SaaS) 数据湖仓部署是作为服务提供的交钥匙解决方案。例如,最近发布的 CDP One数据湖仓一体化是一种在云中运行的 SaaS 产品(亚马逊网络服务)。...数据湖仓一体的好处 运营可用于生产的数据湖仓可能具有挑战性。挑战包括部署和维护数据平台以及管理云计算成本。...CDP One 是一种一体化数据湖仓软件即服务 (SaaS) 产品,可对任何类型的数据进行快速简便的自助分析和探索性数据科学。
为此,这篇文章我们将主要分析: 1、数据仓、数据湖、湖仓一体究竟是什么? 2、架构演进,为什么说湖仓一体代表了未来? 3、现在是布局湖仓一体的好时机吗?...01:数据湖+数据仓≠湖仓一体 在湖仓一体出现之前,数据仓库和数据湖是被人们讨论最多的话题。 正式切入主题前,先跟大家科普一个概念,即大数据的工作流程是怎样的?...02:为什么说湖仓一体是未来? 回归开篇的核心问题:湖仓一体凭什么能代表未来? 关于这个问题,我们其实可以换一个问法,即在数据智能时代,湖仓一体会不会成为企业构建大数据栈的必选项?...,这同样是未来湖仓一体架构需要持续演进的方向。...03:现在是布局湖仓一体的好时机吗? 从市场发展走向来看,“湖仓一体”架构是基于技术发展进程的必经之路。
数据存储领域“性格”迥异的两兄弟 我们追求湖仓一体,说明他们之前其实是分离的。那么,为什么是分离的呢?...而数据湖由于其包罗万象的特性,虽然存储成本较低,但在数据治理方面面临更大的挑战。 为什么要追求湖仓一体? 既然数据湖和数据仓库是两种截然不同的东西,那我们为什么现在要强行将他们融为一体呢?...架构设计 在选择合适的技术平台和供应商之后,设计一个能够同时支持数据湖和数据仓库操作的统一架构,是实现湖仓一体化的关键。...同时,云计算的广泛应用将促进湖仓一体化方案在云原生和多云环境中的适应性,增强其灵活性和扩展性。 此外,用户友好性和无缝集成,将成为湖仓一体化解决方案的关键特征。...总的来说,湖仓一体化的未来发展将是技术创新和业务需求相结合的结果,旨在为企业提供更智能、更安全、更高效的数据管理和分析解决方案,从而在数据驱动的新时代中占据先机。 文:一蓑烟雨 / 数据猿
首先,我们来讲一讲什么是数据库。 作为程序员,我们写的大多数商业项目,往往都需要用到大量的数据。计算机的内存,可以实现数据的快速存储和访问。...数据湖当中的数据可谓是包罗万象: 结构化的,有各种关系型数据库的行和列。 半结构化的,有JSON、XML、CSV。 非结构化的,有电子邮件、PDF、各种文档。...我们将这样一种强大的数据湖及其配套的专用构建数据服务体系,称为智能湖仓(Lake House)架构。...下面我们从5个方面,来分别介绍一下亚马逊云科技智能湖仓是如何满足企业的各项需要的: 1.可扩展数据湖 如何保证数据湖的可扩展性呢?...最终,利用亚马逊云科技的智能湖仓架构,有道乐读APP月活跃指数增长了20%,同时收到了来自用户家长的大量正面反馈。
在您看来,目前业内对湖仓一体的定义是否达成一致了?不同厂商推的湖仓一体技术方案有哪些关键差异? 关涛: 我认为目前业内对湖仓一体的整体大方向是高度达成一致的。...如果企业觉得没必要在基础设施上投很多资源,而是要把更多资源放在业务上,那选一个更偏全托管版的湖仓一体解决方案更有价值。...如果企业选择全托管的湖仓一体解决方案,则成本主要来自于对当前数据,比如数仓迁移、数据整理等一次性开支,一旦这部分工作做完,后续在数据治理上形成正循环,整体成本不会太高。...现在是采用湖仓一体的好时机吗? 关涛: 现在大多数企业都还没有用到湖仓一体的新架构,他们要么选择了数据湖方案,要么选择了数仓方案。湖仓一体作为一个新兴架构,很多企业目前还在早期探索阶段。...另外,由于湖仓一体架构底层是一个二元体系,那向上面向用户的时候,用户是不是能看到两个体系?如果用户能够看到两个体系的话,如何区分和引导?如果用户看不到的话,那底下开发需要做什么样的封装?
Hudi介绍 概述 架构图 核心概念 Timeline 文件布局 索引 表类型与查询 COW类型表详解 MOR类型表详解 流实时摄取 Frog造数程序 Structured Streaming 湖仓一体...表类型 Hudi中支持两种类型的表,一种是COW,另外一种是MOR。要区分它们很容易,COW是不带日志的、而MOR是带日志的。...hudiTableName}") .awaitTermination() } } 运行 启动HDFS集群 启动Hive MetaStore和HiveServer2 启动造数程序 湖仓一体...我们来看看这些是什么样的JOB。 image-20210323182655317 为了方便Job容易被观察,我为每一个Stream Query设置一个容易识别的名称。...Apache Hudi在Hopsworks机器学习的应用 通过Z-Order技术加速Hudi大规模数据集分析方案 实时数据湖:Flink CDC流式写入Hudi Debezium-Flink-Hudi
导读: 湖仓一体是将数据湖和数据仓库的优势相结合的数据管理系统。Apache Doris 结合自身特性,提出了【数据无界】和【湖仓无界】核心理念。...上篇文章已介绍了 Apache Doris 湖仓一体完整方案,本文将聚焦典型应用场景,进一步深入,帮助读者更好地理解和应用 Apache Doris 湖仓一体。...在数据驱动决策的时代,湖仓一体架构以统一存储、统一计算、统一管理的创新形式,补齐了传统数据仓库和数据湖的短板,逐步成为企业大数据解决方案新的标准。...在上一篇文章中,全面介绍了湖仓一体演进历程以及 Apache Doris 湖仓一体解决方案,具体查阅:(上篇)从 0 到 1 构建湖仓体系, Apache Doris 湖仓一体解决方案全面解读。...阅读推荐(上篇)从 0 到 1 构建湖仓体系, Apache Doris 湖仓一体解决方案全面解读Cisco WebEx 数据平台基于 Apache Doris 统一 Trino、Pinot、Iceberg
01 什么是数据仓库、数据集市和数据湖?...一种常见的解决方案是结合数据湖和数据仓库优势,建立湖仓一体化,进而解决了数据湖的局限性:直接在用于数据湖的低成本存储上实现与数据仓库中类似的数据结构和数据管理功能。...是否能有一种方案同时兼顾数据湖的灵活性和云数据仓库的成长性,将二者有效结合起来为用户实现更低的总体拥有成本?那么湖仓一体化就是答案! 04 什么是湖仓一体化?...06 湖仓一体化有什么好处? 湖仓一体能发挥出数据湖的灵活性与生态丰富性,以及数据仓库的成长性与企业级能力。...如果企业觉得没必要在基础设施上投很多资源,而是要把更多资源放在业务上,那选一个更偏全托管版的湖仓一体解决方案更有价值。
通过引入 Apache Doris 湖仓一体能力,替换了 Clickhouse ,升级为湖仓一体架构,并结合 Doris 的物化视图改写能力和自动物化服务,实现高性能的数据查询以及灵活的数据治理。...,逐步形成了湖仓一体解决方案:极致分析性能、助力湖仓查询加速 : 借助强大的分布式 SQL 查询引擎,Apache Doris 对 Parquet、ORC 等开发格式进行了深度适配。...基于 Apache Doris 的湖仓一体架构快手基于 Apache Doris 升级为湖仓一体分析平台,新架构如图所示:从下至上,主要分为以下几个层级:数据加工层:数据源数据同步到数据湖仓(Hive/...湖仓数据查询优化除缓存服务和物化视图服务外,快手在实际使用过程中总结了一些湖仓查询的优化经验:外表统计信息:统计信息对查询规划尤为重要,尤其是在复杂关联查询中。...结束语引入 Apache Doris,使快手成功从湖仓分离架构升级到湖仓一体架构。
湖仓一体 - Apache Arrow的那些事 Arrow是高性能列式内存格式标准。...Gandiva 生成的是 LLVM 的形式,并且可以生成向量化的执行代码。Gandiva 是一个开源项目,旨在为 Apache Arrow 提供高效的数据处理功能。...Q3:Arrow 社区提供了 compute API 以及各种语言的高性能实现以供基于 Arrow 格式进行数据操作的向量化复用,跟 Gandiva 生成的 LLVM 的形式的向量化有什么区别和联系?...2、Acero执行引擎 Push-based向量化执行引擎,是一个C++库。...假设他是一个batch流的一部分,并且流假设是由一个持久的schema。因此该schema通常存储在ExecNode中 2)ExecBatch中的列要么是一个Array,要么是标量。
湖仓一体,又被称为Lake House,其出发点是通过数据仓库和数据湖的打通和融合,让数据流动起来,减少重复建设。...Lake House架构最重要的一点,是实现数据仓库和数据湖的数据/元数据无缝打通和自由流动。...湖里的“显性价值”数据可以流到仓里,甚至可以直接被数仓使用;而仓里的“隐性价值”数据,也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。...不同于传统「交易核心」往往仅针对特定业务系统解决其交易需求不同的是,「数据核心」需要汇聚从多个「交易核心」产生的实时交易流水数据,为全企业跨业务的多个系统提供高并发的实时对客全量数据查询及数据探索分析能力...湖仓一体技术借助海量、实时、多模的数据处理能力,实现全量数据价值的持续释放,正成为企业数字化转型过程中的备受关注焦点。
数据湖适合存储非结构化的、信息密度低的、未经清洗的数据。例如生产中我们获取到的日志信息、长文本信息等都可以直接放到数据湖中。 曾经有一段时间,大家对于大数据的存储形式分裂为了两派。...不断询问是选择数据湖,还是选择数据仓库? 选择数据湖,才能拥有数据的多样与灵活,有利于将不同的数据组合在一起,发现新的规律。...湖仓一体,即打通数据仓库和数据湖两套体系,让数据和计算在湖和仓之间自由流动,从而构建一个完整的有机的大数据技术生态体系。...下面这份PPT材料来自DAMA中国,专题分享活动《湖仓一体,构建企业数字化新基座》,作者数据科学家毛亮坚老师,主要介绍了大数据平台架构演进、详细阐述湖仓一体架构构建与探索思路、湖仓一体化平台应用实践案例...、最后提出了湖仓一体化平台未来发展趋势,推荐给大家阅读。
为此,可通过建设实时数仓解决上述问题,实时数仓在离线数仓基础上进一步满足时效性的要求,依托流批一体、湖仓一体、云计算等技术,兼具时效性和灵活性优势,可作为金融业实时数据的生产、存储和使用平台。...同时,随着Hudi、Iceberg、Delta Lake等数据湖技术发展,依托数据湖底座的湖仓一体实时数仓建设正在兴起,对推进企业数字化转型具有重要价值: • 一是弥补现有架构的不足,湖仓一体实时数仓弥补了传统数仓对于数据实时处理能力的不足...• 二是降低企业成本,湖仓一体实时数仓提供统一流批数据底座,避免不同平台间数据移动,降低数据流动带来的开发成本及计算存储开销,提升企业效率。...• 三是提升企业级数据分析整合能力,湖仓一体实时数仓打破了数据湖与数据仓库割裂的体系,将数据湖的灵活性、数据多样性以及丰富的生态与数据仓库的企业级数据分析能力进行了融合。...实时数仓建设关键技术 3.1 实时数据入湖 实时数据入湖是湖仓一体实时数仓数据模型建设的基础,与流计算模式下“即用即弃”的数据处理策略不同,湖仓一体实时数仓借助Hudi数据湖存储引擎对实时流数据进行摄入存储
有人说数据湖是下一代大数据平台,各大云厂商也在纷纷的提出自己的数据湖解决方案,一些云数仓产品也增加了和数据湖联动的特性。 但是数据仓库和数据湖的区别到底是什么,是技术路线之争?是数据管理方式之争?...二、 什么是数据湖 近几年数据湖的概念非常火热,但是数据湖的定义并不统一,我们先看下数据湖的相关定义。...数据沼泽是一个劣化的数据湖,用户无法访问,或是没什么价值。...与此同时,阿里云EMR数据湖解决方案也将推出Data Lake Formation,MaxCompute湖仓一体方案也会支持对该数据湖中的统一元数据服务的一键映射能力。...解决方案 为了解决上述的痛点问题,阿里云产品团队和微博机器学习平台团队联合共建湖仓一体新技术,打通了阿里巴巴MaxCompute云数仓和EMR Hadoop数据湖,构建了一个跨湖和仓的AI计算中台。
这就是为什么团队必须为其数据堆栈的存储层选择正确的架构。 但是,数据存储的选择正在迅速发展。数据仓库和数据湖是大数据使用最广泛的存储架构。但是使用数据湖仓一体怎么样呢?...缺乏数据可靠性和安全性:数据湖缺乏数据一致性,难以保证数据可靠性和安全性。由于数据湖可以容纳所有数据格式,因此实施适当的数据安全和治理策略来满足敏感数据类型可能具有挑战性。 3. 什么是湖仓一体?...成本效益:湖仓一体通过利用低成本的对象存储选项来实现数据湖的经济高效的存储功能。此外,数据湖房通过提供单一解决方案消除了维护多个数据存储系统的成本和时间。...易于数据版本控制、治理和安全性:数据湖仓一体架构强制实施架构和数据完整性,从而更容易实现强大的数据安全和治理机制。 3.7 湖仓一体的缺点 湖仓一体的主要缺点是它仍然是一项相对较新且不成熟的技术。...湖仓一体是最新的数据存储架构,它将数据湖的成本效率和灵活性与数据仓库的可靠性和一致性结合在一起。 此表总结了数据仓库、数据湖和湖仓一体之间的差异。
领取专属 10元无门槛券
手把手带您无忧上云