首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Analytical Chemistry | 深度学习实现高分辨率LC-MS数据中的精确峰检测

    液相色谱与质谱联用(LC-MS)是代谢组学中最受欢迎的分析平台之一。尽管基于LC-MS的代谢组学应用程序种类繁多以及分析硬件的发展,但是LC-MS数据的处理仍然遇到一些问题。最关键的瓶颈之一是原始数据处理,LC-MS原始数据通常由成千上万的原始MS质谱图组成;每个光谱都有其自己的序列号,并且该数目随保留时间(RT)的增加而增加。这些数据通常包含数千个信号,使得手动数据处理几乎变得不可能。当前用于自动LC-MS数据处理的流程通常包括以下步骤:(1)检测感兴趣区域(ROI);(2)检测色谱峰,然后对其进行积分;(3)所有样品的峰匹配(分组);(4)通过注释相应的加合物和碎片离子将属于同一代谢物的峰聚类为一组。

    06

    Brain综述:整合直接电刺激与脑连接组学

    神经和神经发育疾病是一个主要的公共卫生问题,迫切需要新的治疗方法。有效疗法的发展依赖于对行为产生过程中涉及的神经底物的精确定位。在清醒手术中进行的认知和神经监测中进行的直接电刺激(Direct electrical stimulation, DES)目前被认为是脑功能因果关系映射的金标准。然而,DES受限于刺激位点的局限性,阻碍了在网络水平上对人脑功能的真正整体探索。我们使用了来自612例胶质瘤患者的4137个DES点,并结合人类脑连接组数据——静息态功能MRI (n = 1000)和扩散加权成像(n = 284)——来提供针对12个不同行为域的因果宏观功能网络的多模态描述。为了探讨我们的程序的有效性,我们(i)比较了健康人群和临床人群的网络地形;(ii)测试了DES衍生网络的预测能力;(iii)量化结构连接与功能连接之间的耦合;(iv)建立一个多元模型,能够量化单个受试者偏离正常人群的情况。最后,我们通过测试DES衍生的功能网络在识别与术后语言障碍相关的关键神经调控靶点和神经底物方面的特异性和敏感性,探索了其转译潜能。与单独使用DES相比,DES和人类连接组数据的组合使全脑覆盖率平均增加了29.4倍。DES衍生的功能网络可以预测未来的刺激点(准确率为97.8%),并得到皮层下刺激的解剖连接的有力支持。我们没有观察到患者和健康人群在组和单一受试者水平之间有任何显著的地形差异。在具体的临床应用中,我们发现DES衍生的功能网络在多个功能域与有效的神经调控靶点重叠,在使用不同刺激技术的颅内刺激点进行测试时显示出高度的特异性,并可有效地用于表征术后行为缺陷。DES与人类连接组的集成从根本上提高了DES或单独功能成像提供的功能映射的质量。DES衍生的功能网络可以可靠地预测未来的刺激点,与基础白质有很强的对应关系,可用于患者特异性的功能定位。可能的应用范围从精神病学和神经病学到神经心理学、神经外科和神经康复。

    01

    Neuron脑影像机器学习: 表征、模式信息与大脑特征:从神经元到神经影像

    人们对于神经影像的研究已不满足于对大脑局部的研究,开始探索汇集了更多分散于多个脑系统的脑活动预测模型。这里我们回顾多变量预测模型如何对定量可重复的预测结果进行优化,构建了比传统模型具有更大影像的身心交互模型并对大脑表达构筑于思维模式的方法进行了解释,尽管在实现前两个目标方面取得了越来越大的进展,但是模型仅仅开始处理后一个目标。通过明确地识别知识的缺口,研究项目可以有意地、程序化地朝着识别潜在心理状态和过程的大脑表征的目标前进。本文由美国科罗拉多大学学者发表在Neuron杂志。

    01

    用于类别级物体6D姿态和尺寸估计的标准化物体坐标空间

    本文的目的是估计RGB-D图像中未见过的对象实例的6D姿态和尺寸。与“实例级”6D姿态估计任务相反,我们的问题假设在训练或测试期间没有可用的精确对象CAD模型。为了处理给定类别中不同且未见过的对象实例,我们引入了标准化对象坐标空间(NOCS)-类别中所有可能对象实例的共享规范表示。然后,我们训练了基于区域的神经网络,可以直接从观察到的像素向对应的共享对象表示(NOCS)推断对应的信息,以及其他对象信息,例如类标签和实例蒙版。可以将这些预测与深度图结合起来,共同估算杂乱场景中多个对象的6D姿态和尺寸。为了训练我们的网络,我们提出了一种新的上下文感知技术,以生成大量完全标注的混合现实数据。为了进一步改善我们的模型并评估其在真实数据上的性能,我们还提供了具有大型环境和实例变化的真实数据集。大量实验表明,所提出的方法能够稳健地估计实际环境中未见过的对象实例的姿态和大小,同时还能在标准6D姿态估计基准上实现最新的性能。

    03

    深层卷积神经网络在路面分类中的应用

    编者按:路面峰值附着系数是实现车辆精确运动控制的关键参数。现有的路面识别方法多是基于车辆动力学构建状态观测器实现。此类方法通常适用于车辆加速和减速期间,在轮胎力饱和的情况下,例如在强制动条件下,确定摩擦系数是可行的。困难在于在更正常的驾驶环境下获得摩擦估计,也就是当轮胎滑移率较小时的估计(路面附着利用较低)。实际的道路环境往往复杂多变,而此类方法的收敛速度往往不足以实现实时估计的要求。因此,如何实现高精度实时的路面识别方法将会是此类方法研究的难点与重点。与此同时,基于机器视觉的路面识别方法的优势在于探测范围广、预测性强,但是易受环境中的光线等因素干扰,未来此类方法的研究重点会放在抗干扰能力和对图像识别准确率上。而基于车辆动力学的识别方法与基于图像的识别方法的有效结合,可以充分解决实时性与准确性冲突的问题,基于图像的识别方法为基于车辆动力学的识别方法提供预测的参考输入,可以提前获悉前方路面的特征,使得智能驾驶系统的性能得到提升。

    02
    领券