首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用 OpenCV 替换图像的背景

业务背景 在我们的某项业务中,需要通过自研的智能硬件“自动化”地拍摄一组组手机的照片,这些照片有时候因为光照的因素需要考虑将背景的颜色整体替换掉,然后再呈现给 C 端用户。这时就有背景替换的需求了。...技术实现 使用 OpenCV ,通过传统的图像处理来实现这个需求。 方案一: 首先想到的是使用 K-means 分离出背景色。...大致的步骤如下: 将二维图像数据线性化 使用 K-means 聚类算法分离出图像的背景色 将背景与手机二值化 使用形态学的腐蚀,高斯模糊算法将图像与背景交汇处高斯模糊化 替换背景色以及对交汇处进行融合处理...相近颜色替换背景的效果.png 于是换一个思路: 使用 USM 锐化算法对图像增强 再用纯白色的图片作为背景图,和锐化之后的图片进行图像融合。 图像锐化是使图像边缘更加清晰的一种图像处理方法。...基于 USM 锐化的算法可以去除一些细小的干扰细节和噪声,比一般直接使用卷积锐化算子得到的图像锐化结果更加真实可信。 int main() { Mat src = imread(".

2.4K30

图像中的几何变换

图像几何变换概述 图像几何变换是指用数学建模的方法来描述图像位置、大小、形状等变化的方法。在实际场景拍摄到的一幅图像,如果画面过大或过小,都需要进行缩小或放大。...;由于图形硬件、视觉算法已经普遍支持齐次坐标与矩阵乘法,因此更加促进了齐次坐标使用,使得它成为图形学中的一个标准;后面提到的几何变换都以齐次坐标和齐次变换矩阵为基础。...点与向量的其次变换: 从普通坐标转换成齐次坐标时(以三维点为例) 如果(x,y,z)是个点,则变为(x,y,z,1); 如果(x,y,z)是个向量,则变为(x,y,z,0)。...图像中的几何变换 1....从定义来看,仿射变换可以看做是投影变换的特殊形式;把投影变换矩阵的最后一行变为[0,0,1]或者 [0,0,0,1],即可变为仿射变换矩阵,也可以证明仿射变换是投影变换的特殊形式;因此,对于平移、缩放、

2.1K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    图像中的裂纹检测

    ,在我们的数据中显示了不同类型的墙体裂缝,其中一些对我来说也不容易识别。...224, 3)) for layer in vgg_conv.layers[:-8]: layer.trainable = False 导入了VGG架构,并允许训练最后两个卷积模块,以便我们的模型能够具有一定的特殊性...如果小伙伴可以使用GPU,则培训非常简单。COLAB为我们提供了加快这一过程所需的武器。我们还使用了Keras提供的简单数据生成器进行图像增强。 最终,我们能够达到0.90的整体精度,还不错!...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。...我们可以看到,热图能够很好地泛化并指出包含裂缝的墙块。 在裂纹图像中显示异常 03. 总结 在这篇文章中,我们为异常识别和定位提供了一种机器学习解决方案。所有这些功能都可以通过实现单个分类模型来访问。

    7110

    图像中的裂纹检测

    ,在我们的数据中显示了不同类型的墙体裂缝,其中一些对我来说也不容易识别。...224, 224, 3))for layer in vgg_conv.layers[:-8]: layer.trainable = False 导入了VGG架构,并允许训练最后两个卷积模块,以便我们的模型能够具有一定的特殊性...如果小伙伴可以使用GPU,则培训非常简单。COLAB为我们提供了加快这一过程所需的武器。我们还使用了Keras提供的简单数据生成器进行图像增强。 最终,我们能够达到0.90的整体精度,还不错! ?...,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。...我们可以看到,热图能够很好地泛化并指出包含裂缝的墙块。 ? 在裂纹图像中显示异常 03. 总结 在这篇文章中,我们为异常识别和定位提供了一种机器学习解决方案。

    1.4K40

    使用OpenCV测量图像中物体的大小

    原文链接:https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/ 今天的文章是关于测量图像中物体大小和计算它们之间距离的系列文章的第二部分...“单位像素”比率 为了确定图像中对象的大小,我们首先需要使用参考对象执行“校准”(不要与内在/外在校准混淆)。...在任何一种情况下,我们的引用都应该以某种方式是唯一可识别的。 在这个例子中,我们将使用0.25美分作为我们的参考对象,在所有的例子中,确保它总是我们图像中最左边的对象。...通过保证0.25美分是最左边的对象,我们可以从左到右排序我们的对象轮廓,获取美分(它总是排序列表中的第一个轮廓),并使用它来定义pixels_per_metric,我们定义为: pixels_per_metric...使用这个比率,我们可以计算图像中物体的大小。 用计算机视觉测量物体的大小 现在我们了解了“像素/度量”比率,我们可以实现用于测量图像中对象大小的Python驱动程序脚本。

    2.7K20

    如何使用 Python 隐藏图像中的数据

    简而言之,隐写术的主要目的是隐藏任何文件(通常是图像、音频或视频)中的预期信息,而不实际改变文件的外观,即文件外观看起来和以前一样。...在这篇文章中,我们将重点学习基于图像的隐写术,即在图像中隐藏秘密数据。 但在深入研究之前,让我们先看看图像由什么组成: 像素是图像的组成部分。...每个 RGB 值的范围从 0 到 255。 现在,让我们看看如何将数据编码和解码到我们的图像中。 编码 有很多算法可以用来将数据编码到图像中,实际上我们也可以自己制作一个。...在这篇文章中使用的一个很容易理解和实现的算法。 算法如下: 对于数据中的每个字符,将其 ASCII 值转换为 8 位二进制 [1]。 一次读取三个像素,其总 RGB 值为 3*3=9 个。...重复这个过程,直到所有数据都被编码到图像中。 例子 假设要隐藏的消息是‘Hii’。 消息是三个字节,因此,对数据进行编码所需的像素为 3 x 3 = 9。

    4K20

    OpenCV图像处理中“投影技术”的使用

    问题引出 本文区分”问题引出“、”概念抽象“、”算法实现“三个部分由表及里具体讲解OpenCV图像处理中“投影技术”的使用,并通过”答题卡识别“”OCR字符分割”“压板识别”“轮廓展开分析”四个的例子具体讲解算法使用...在这样采集到的图像中,大量存在黑色的定位区块: ? 如果进一步定位,可以得到这样的结果: ? 如果做成连续图像 ? ?...在这波峰波谷中,存在着的“量化”结果,对应了答题卡中的定位关系 概念抽象 在前面的分析里,我们已经基本建立起“投影”的概念。...从离散的角度来说,也就是: 局部最大值:F(x)>F(x−1)且F(x)>F(x+1) 局部最小值:F(x)<F(x−1)且F(x)<F(x+1) 类似于求极值、求切线等的情况。 ?...vup.push_back(i); if (vdate[i - 1] > 0 && vdate[i] == 0) vdown.push_back(i); } } 在具体使用过程中

    1.3K20

    如何从失焦的图像中恢复景深并将图像变清晰?

    是的,我们今天就来看看另外一种图像模糊——即失焦导致的图像模糊——应该怎么样处理。 我今天将要介绍的技术,不仅能够从单张图像中同时获取到全焦图像(全焦图像的定义请参考33....中的思想,只不过现在要求的是卷积核c,这就要求我们提前获取到失焦的图像x和清晰的图像b ?...b 反向使用用去卷积的思想,就可以得到卷积核c。...因此,不管是从肉眼上观察,还是通过振铃效应导致的过大的卷积误差,我们都很容易判断哪个是正确尺度的卷积核。...从下图可以看到,传统光圈的可判别性确实不够强,而作者最终选择的形态则具有很强的可判别性。 ? 五、总结 今天给大家介绍了一种可以通过处理失焦模糊的照片同时获取到场景的景深图和全焦图像的技术。

    3.5K30

    优化图像处理中的图像格式:OpenCV中的PNG、JPG和WEBP

    在计算机视觉和图像处理应用中,选择正确的图像格式可以影响性能和质量。...让我们深入了解每种格式在图像处理方面的独特特性,并提供实际的代码示例,展示如何使用Python中的OpenCV加载和保存这些格式。 1....JPG/JPEG(联合图像专家小组) 优势: JPG广泛用于照片和自然图像,具有高效的有损压缩。它非常适合在大型图像数据集中减少文件大小,或者当速度至关重要时。...它还不支持透明度,限制了其在某些应用中的使用。...它结合了PNG的透明度和JPG的压缩效率,这在需要高性能和存储效率的计算机视觉应用中是有利的。对于机器学习,使用WEBP可以节省存储空间并加快数据集加载速度,特别是对于大型数据集。

    25410

    使用OpenCV测量图像中物体之间的距离

    Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...上篇我们讨论了如何使用参考对象来测量图像中对象的大小。 这个参考对象应该有两个重要的特征,包括: 我们知道这个物体的尺寸(以英寸、毫米等表示)。 它很容易在我们的图像中被识别出来(根据位置或外观)。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...由于我们知道0.25美分(即参考对象)将始终是图像中最左边,因此从左到右对轮廓进行排序可以确保与参考对象对应的轮廓始终是cnts列表中的第一个。

    5K40

    使用OpenCV测量图像中物体之间的距离

    Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...上篇我们讨论了如何使用参考对象来测量图像中对象的大小。 这个参考对象应该有两个重要的特征,包括: 我们知道这个物体的尺寸(以英寸、毫米等表示)。 它很容易在我们的图像中被识别出来(根据位置或外观)。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...当我们的图像被模糊后,我们应用Canny边缘检测器来检测图像中的边缘,然后进行膨胀+腐蚀来缩小边缘图中的缝隙(第7-9行)。...由于我们知道0.25美分(即参考对象)将始终是图像中最左边,因此从左到右对轮廓进行排序可以确保与参考对象对应的轮廓始终是cnts列表中的第一个。

    2K30

    图像分类任务中的损失

    图像分类是机器学习中的一项重要任务。这项任务有很多比赛。良好的体系结构和增强技术都是必不可少的,但适当的损失函数现在也是至关重要的。...例如,在kaggle蛋白质分类挑战赛中(https://www.kaggle.com/c/human-protein-atlas-image-classification),几乎所有的顶级团队都使用不同的损失来训练他们的卷积神经网络...为了消除这些缺点,建议对类之间的小距离进行处罚。 ? ? Ring loss 与直接学习质心不同,该机制具有少量参数。在‘Ring loss’文章中,作者证明了,当特征向量范数相同时,角边距最大。...在 SphereFace 中,不使用执行附加边界,而是使用乘法因子: ? 或 CosFace 依赖于cosine边界 ?...这一项要求用适当的均值和协方差矩阵从正态分布中采样x_i。 ? 在图中可以看到二维空间的正态分布。

    2.2K10

    学习PHP中好玩的Gmagick图像操作扩展的使用

    学习PHP中好玩的Gmagick图像操作扩展的使用 在 PHP 的图像处理领域,要说最出名的 GD 库为什么好,那就是因为它不需要额外安装的别的什么图像处理工具,而且是随 PHP 源码一起发布的,只需要在安装...PHP 的时候添加上编译参数就可以了。...GraphicsMagick 是从 ImageMagick 5.5.2 中 fork 出来的一个分支。它相对于 ImageMagick 来说并没有什么新的特性,只是更加的专注于稳定性和性能方面。...oilpaintimage() 是为图片添加一个油画效果,看出来了吗,Gmagick 实例化后的对象中的方法是可以链式调用的。只要当前你使用的方法返回的也是 Gmagick 对象就可以了。...测试代码: https://github.com/zhangyue0503/dev-blog/blob/master/php/202012/source/4.学习PHP中好玩的Gmagick图像操作扩展的使用

    1K20

    html中添加背景音乐的标签,添加背景音乐的html标签是什么

    大家好,又见面了,我是你们的朋友全栈君。...添加背景音乐的html标签是,bgsound是用以插入背景音乐,但只适用于IE,在netscape和firefox中并不适用,其参数设定很少,语法如“”。 添加背景音乐的html标签是。...bgsound 是用以插入背景音乐,但只适用于 IE,在netscape 和 firefox 中并不适用,其参数设定很少。...(不能播放播放列表文件) loop=infinite 是否自动重复播放,LOOP=2 表示重复两次,可以用-1表示是无限重复 使用bgsound设置背景音乐,当窗口最小化时就自动暂停播放,窗口恢复时,继续播放...设置网页背景音乐时常用的方法还有使用embed标签 和object标签 下面是bgsound最小化窗口时仍然继续播放的特例: 当bgsound出现在iframe框架页面内时,如果框架页面内的背景音乐正在加载或正在播放

    6.4K40

    python中列表的使用

    目的:熟练使用列表函数,方便管理多个变量值 环境:ubuntu 16.04  python 3.5.2 情景:列表应该是数据处理时经常使用到一种数据类型,可以有序、组合的操作值存储,是很实用的函数。。。...这是最后一篇整理的笔记,发现排版很浪费时间,也得不到交流,还是用类似onenote写笔记的方式快。...列表: list(),列表是一个可迭代对象,常用的操作有for, join, sort, reverse, sorted, 索引和切片。...它本身有的操作包括: box = list() 或 box = [] 设置空的列表 box.append('value') 尾部追加元素 box.insert(1, 'value') 索引插入元素 box...索引替换或写入元素 box.pop() 删除尾部元素 box.pop(1) 索引删除元素 box.index('value') 获取元素下标 del box[1] 删除指定元素 sorted(box) 返回一个新的正向列表

    5.3K10

    使用Python和OpenCV检测图像中的多个亮点

    今天的博客文章是我几年前做的一个关于寻找图像中最亮点的教程的后续。 我之前的教程假设在图像中只有一个亮点你想要检测... 但如果有多个亮点呢?...我们的目标是检测图像中的这五个灯泡,并对它们进行唯一的标记。 首先,打开一个新文件并将其命名为detect_bright_spot .py。...第7行我们开始循环遍历每个label中的正整数标签,如果标签为零,则表示我们正在检测背景并可以安全的忽略它(9,10行)。 否则,我们为当前区域构建一个掩码。...下面我提供了一个GIF动画,它可视化地构建了每个标签的labelMask。使用这个动画来帮助你了解如何访问和显示每个单独的组件: ? 然后第15行对labelMask中的非零像素进行计数。...如果numPixels超过了一个预先定义的阈值(在本例中,总数为300像素),那么我们认为这个斑点“足够大”,并将其添加到掩膜中。 输出掩模如下图: ?

    4.1K10
    领券