首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从DataFrame中删除列

在操作数据的时候,DataFrame对象中删除一个或多个列是常见的操作,并且实现方法较多,然而这中间有很多细节值得关注。...首先,del df['b']有效,是因为DataFrame对象中实现了__delitem__方法,在执行del df['b']时会调用该方法。但是del df.b呢,有没有调用此方法呢?...但是,当我们执行f.d = 4的操作时,并没有在StupidFrame中所创建的columns属性中增加键为d的键值对,而是为实例f增加了一个普通属性,名称是d。...大学实用教程》中的详细介绍)。...当然,并不是说DataFrame对象的类就是上面那样的,而是用上面的方式简要说明了一下原因。 所以,在Pandas中要删除DataFrame的列,最好是用对象的drop方法。

7K20

Python中的DataFrame模块学

初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...重新调整index的值   import pandas as pd   data = pd.DataFrame()   data['ID'] = range(0,3)   # data =   # ID...('user.csv')   print (data)   将DataFrame数据写入csv文件   to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv   import...异常处理   过滤所有包含NaN的行   dropna()函数的参数配置参考官网pandas.DataFrame.dropna   from numpy import nan as NaN   import...'表示去除行 1 or 'columns'表示去除列   # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有

2.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    (六)Python:Pandas中的DataFrame

    的Series集合 创建         DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引         ...DataFrame也能自动生成行索引,索引从0开始,代码如下所示: import pandas as pd data = {'name': ['aaaaaa', 'bbbbbb', 'cccccc']...admin  2 3  admin  3 另一种删除方法     name  a 1  admin  1 3  admin  3 (1)添加列         添加列可直接赋值,例如给 aDF 中添加...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...0 one 1 一 1 one 1 一 2 two 2 二 3 three 3 三 4 four 1 四 5 five 5 五 """ # 筛选列表中...,当b列中为’1’时,所有c的值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] #...筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist()

    5.1K10

    访问和提取DataFrame中的元素

    访问元素和提取子集是数据框的基本操作,在pandas中,提供了多种方式。...对于一个数据框而言,既有从0开始的整数下标索引,也有行列的标签索引 >>> df = pd.DataFrame(np.random.randn(4, 4), index=['r1', 'r2', 'r3...Name: r1, dtype: float64 # 根据单个行列标签,访问对应元素 >>> df.loc['r1','A'] -0.22001819046457136 # 也支持多个行列标签,用列表的写法...B r1 -0.220018 -0.398571 r2 -1.416611 0.826713 r3 -0.640207 -0.105941 r4 -2.254314 -1.228511 函数调用的本质是通过函数返回对应的标签...>>> df.iat[0, 0] -0.22001819046457136 pandas中访问元素的具体方法还有很多,熟练使用行列标签,位置索引,布尔数组这三种基本的访问方式,就已经能够满足日常开发的需求了

    4.4K10

    SparkMLLib中基于DataFrame的TF-IDF

    一 简介 假如给你一篇文章,让你找出其关键词,那么估计大部分人想到的都是统计这个文章中单词出现的频率,频率最高的那个往往就是该文档的关键词。...所以,排在最前面的几个词,就是这篇文章的关键词。 再啰嗦的概述一下: TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。...二 TF-IDF统计方法 本节中会出现的符号解释: TF(t,d):表示文档d中单词t出现的频率 DF(t,D):文档集D中包含单词t的文档总数。...log表示对得到的值取对数。 TF-IDF 数学表达式 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。...三 Spark MLlib中的TF-IDF 在MLlib中,是将TF和IDF分开,使它们更灵活。 TF: HashingTF与CountVectorizer这两个都可以用来生成词频向量。

    2K70

    从DataFrame自动化特征抽取的尝试

    前言 虽然提供了很多Estimator/Transformer, 正如这篇文章所显示的,如何基于SDL+TensorFlow/SK-Learn开发NLP程序,处理的代码依然是很多的,能不能进一步简化呢?...类型 所谓类型指的是Spark DataFrame 的数据是强类型的,常见类型有String,Int, Double, Float, Array, VectorUDF等,他们其实可以给我们提供一定的信息...规则 字段的名字也能给我们一定的启发,通常如果类型是String,并且名字还是title,body,sentence,summary之类的,一般是需要分词的字段。...目前的规则集 EasyFeature 是主要是利用周末开始开发的,所以还有待完善,尤其是其中的规则,需要大量有经验的算法工程师参与进来,提供更好的规则,从而更好的自动化抽取特征。...如果是word sequence/word embedding,则不会拼接到最后的输出字段中。

    42230

    pandas | DataFrame中的排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...是一个常用的统计方法,可以用来了解DataFrame当中数据的分布情况。

    3.9K20

    Pandas DataFrame 中的自连接和交叉连接

    有很多种不同种类的 JOINS操作,并且pandas 也提供了这些方式的实现来轻松组合 Series 或 DataFrame。...自连接 顾名思义,自连接是将 DataFrame 连接到自己的连接。也就是说连接的左边和右边都是同一个DataFrame 。自连接通常用于查询分层数据集或比较同一 DataFrame 中的行。...要获取员工向谁汇报的姓名,可以使用自连接查询表。 我们首先将创建一个新的名为 df_managers的 DataFrame,然后join自己。...df_manager2 的输出与 df_manager 相同。 交叉连接 交叉连接也是一种连接类型,可以生成两个或多个表中行的笛卡尔积。它将第一个表中的行与第二个表中的每一行组合在一起。...总结 在本文中,介绍了如何在Pandas中使用连接的操作,以及它们是如何在 Pandas DataFrame 中执行的。这是一篇非常简单的入门文章,希望在你处理数据的时候有所帮助。

    4.3K20

    【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

    如何从 Spark 的 DataFrame 中取出具体某一行?...Koalas 不是真正的 DataFrame」 确实可以运行,但却看到一句话,大意是数据会被放到一个分区来执行,这正是因为数据本身之间并不保证顺序,因此只能把数据收集到一起,排序,再调用 shift。...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...给每一行加索引列,从0开始计数,然后把矩阵转置,新的列名就用索引列来做。 之后再取第 i 个数,就 df(i.toString) 就行。 这个方法似乎靠谱。

    4.1K30

    pandas | 详解DataFrame中的apply与applymap方法

    在上一篇文章当中,我们介绍了panads的一些计算方法,比如两个dataframe的四则运算,以及dataframe填充Null的方法。...今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...这里要注意,如果将上面代码中的applymap改成apply是会报错的。报错的原因也很简单,因为apply方法的作用域不是元素而是Series,Series并不支持这样的操作。

    3K20

    详解pd.DataFrame中的几种索引变换

    惯例开局一张图 01 索引简介与样例数据 Series和DataFrame是pandas中的主要数据结构类型(老版本中曾有三维数据结构Panel,是DataFrame的容器,后被取消),而二者相较于传统的数组或...list而言,最大的便利之处在于其提供了索引,DataFrame中还有列标签名,这些都使得在操作一行或一列数据中非常方便,包括在数据访问、数据处理转换等。...,当原DataFrame中存在该索引时则提取相应行或列,否则赋值为空或填充指定值。...03 index.map 针对DataFrame中的数据,pandas中提供了一对功能有些相近的接口:map和apply,以及applymap,其中map仅可用于DataFrame中的一列(也即即Series...时对其中的每一行或每一列进行变换;而applymap则仅可作用于DataFrame,且作用对象是对DataFrame中的每个元素进行变换。

    2.5K20

    数据分析EPHS(2)-SparkSQL中的DataFrame创建

    本篇是该系列的第二篇,我们来讲一讲SparkSQL中DataFrame创建的相关知识。 说到DataFrame,你一定会联想到Python Pandas中的DataFrame,你别说,还真有点相似。...这个在后面的文章中咱们在慢慢体会,本文咱们先来学习一下如何创建一个DataFrame对象。...对象 使用toDF方法,我们可以将本地序列(Seq), 列表或者RDD转为DataFrame。...由于比较繁琐,所以感觉实际工作中基本没有用到过,大家了解一下就好。 3、通过文件直接创建DataFrame对象 我们介绍几种常见的通过文件创建DataFrame。...4、总结 今天咱们总结了一下创建Spark的DataFrame的几种方式,在实际的工作中,大概最为常用的就是从Hive中读取数据,其次就可能是把RDD通过toDF的方法转换为DataFrame。

    1.6K20
    领券