首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从加权边缘列表计算中心性得分

是一种用于衡量网络中节点重要性的方法。在网络中,节点的中心性得分可以用来评估节点在信息传播、影响力传播等方面的重要程度。

加权边缘列表是指网络中节点之间的连接关系,并且每条连接都有一个权重值。加权边缘列表计算中心性得分的方法可以根据具体的算法选择不同的权重计算方式,例如度中心性、接近中心性、中介中心性等。

在计算中心性得分时,可以使用以下步骤:

  1. 构建加权边缘列表:根据网络中节点之间的连接关系,构建一个加权边缘列表,其中每条边都有一个权重值。
  2. 计算节点的度中心性:度中心性是指节点在网络中的连接数量。可以通过统计节点的邻居节点数量来计算度中心性得分。
  3. 计算节点的接近中心性:接近中心性是指节点与其他节点之间的距离。可以使用最短路径算法计算节点与其他节点之间的距离,并根据距离计算接近中心性得分。
  4. 计算节点的中介中心性:中介中心性是指节点在网络中作为信息传递的桥梁的程度。可以使用介数中心性算法计算节点的中介中心性得分。
  5. 综合计算中心性得分:根据具体需求,可以综合考虑节点的度中心性、接近中心性和中介中心性得分,计算节点的综合中心性得分。

加权边缘列表计算中心性得分的方法可以应用于社交网络分析、网络安全、推荐系统等领域。在腾讯云中,可以使用腾讯云的图数据库产品TGraph进行加权边缘列表计算中心性得分的操作。TGraph是一种高性能、高可靠性的图数据库,可以支持大规模图数据的存储和分析。

更多关于TGraph的信息,请访问腾讯云官方网站:TGraph产品介绍

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 南开提出 Range-View | 激光雷达技术新进展在自动驾驶等多任务中的应用

    激光雷达测距传感器在安全关键型应用中(例如,自动驾驶中的目标检测和全景分割)发挥着至关重要的作用,它可以在不考虑光照条件的情况下提供精确的3D环境测量。然而,激光雷达点云本质上是非均匀的、无序的且稀疏的,这禁止了高度优化算子(如卷积)的直接应用。解决此问题的一种方法是在点云中首先建立一个邻域结构,通过昂贵的半径搜索或最近邻搜索,然后在局部邻域中应用性能卷积算子[5, 23, 27, 36]。另一种方法是通过对输入点进行量化创建规则的 Voxel 栅格[8, 35, 41, 42, 43]或 Voxel 柱[15, 16, 26, 39, 43],这不可避免地会导致信息丢失。尽管这些算法取得了巨大成功,但利用点集和 Voxel 栅格的算法通常需要繁重的计算,这给在实时自主系统中扩展它们带来了挑战。相比之下,距离图像以无损的方式将3D数据组织成结构化的2D视觉表示。因此,距离图像无疑是所有激光雷达点云数据表示中最为紧凑和高效的。

    01

    大脑功能连接的发展遵循青春期依赖的非线性轨迹

    青春期是对身体和行为产生巨大影响的发育时期,青春期荷尔蒙不仅对身体的形态变化起着重要作用,而且对大脑的结构和功能也起着重要作用。了解青少年时期的大脑发育已经成为神经科学领域的首要任务,因为它与许多精神和行为障碍的发作相吻合。然而,关于青春期如何影响大脑功能连接体,我们知之甚少。在这项研究中,通过对典型发育儿童和青少年(两性)的纵向人类样本的研究,我们证明了大脑功能连接体的发育更符合青春期状态,而不是实足年龄。特别是,大脑功能连接体的中心性、分离性、效率和整合性在青春期标记物出现后增加。我们发现,这些效应在注意力和任务控制网络中更强。最后,在控制了这一效应后,我们发现这些网络之间的功能连接与更好的认知灵活性有关。本研究指出了在探索发育轨迹时考虑纵向非线性趋势的重要性,并强调了青春期对大脑功能组织的影响。

    02

    ucinet网络分析实例(网络分析app)

    UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和KrackPlot等软件作图。UCINET包含大量包括探测凝聚子群(cliques, clans, plexes)和区域(components, cores)、中心性分析(centrality)、个人网络分析和结构洞分析在内的网络分析程序。UCINET还包含为数众多的基于过程的分析程序,如聚类分析、多维标度、二模标度(奇异值分解、因子分析和对应分析)、角色和地位分析(结构、角色和正则对等性)和拟合中心-边缘模型。此外,UCINET提供了从简单统计到拟合p1模型在内的多种统计程序。

    02

    皮质-皮质网络的多尺度交流

    大脑网络中的信号在多个拓扑尺度上展开。区域可以通过局部回路交换信息,包括直接邻居和具有相似功能的区域,或者通过全局回路交换信息,包括具有不同功能的远邻居。在这里,我们研究了皮质-皮质网络的组织如何通过参数化调整信号在白质连接体上传输的范围来调节局部和全局通信。我们发现,大脑区域在偏好的沟通尺度上是不同的。通过研究大脑区域在多个尺度上与邻居交流的倾向,我们自然地揭示了它们的功能多样性:单模态区表现出对局部交流的偏好,而多模态区表现出对全球交流的偏好。我们表明,这些偏好表现为区域和尺度特定的结构-功能耦合。即,单模态区域的功能连接出现在小尺度回路的单突触通信中,而跨模态区域的功能连接出现在大尺度回路的多突触通信中。总之,目前的研究结果表明,交流偏好在大脑皮层之间是高度异质性的,形成了结构-功能耦合的区域差异。

    02

    Nucleic Acids Res. | scHumanNet:用于研究疾病基因细胞类型特异性的单细胞网络分析平台

    本文介绍由哈佛医学院的Martin Hemberg和韩国延世大学生命科学与生物技术学院生物技术系的Insuk Lee共同通讯发表在Nucleic Acids Research的研究成果:单细胞生物学面临的一个主要挑战是识别细胞类型特异性基因功能,这可能会大大提高精准医学的水平。基因的差异表达分析是一种流行但不充分的研究方法,需要补充与细胞类型相关的功能。因此,作者提出了单细胞网络分析平台scHumanNet,用于解决人类不同基因功能的细胞异质性。scHumanNet是基于HumanNet参考相互作用组构建细胞类型特异性基因网络(CGN), 它在单细胞转录组数据上构建的CGN比其他方法显示出更高的细胞环境功能相关性。此外,基于跨细胞类型网络紧致性的基因信号的细胞反褶积揭示了与T细胞相关的乳腺癌预后标志物。scHumanNet还可以利用CGN的中心性对与特定细胞类型相关的基因进行优先排序,并确定CGN在疾病和健康状况之间的差异中心。作者通过揭示乳腺癌预后基因GITR的T细胞特异性功能效应,以及抑制神经元特异性自闭症谱系障碍基因的功能缺陷,证明了scHumanNet的有效性。

    02

    Academic social networks: Modeling, analysis, mining and applications 2019翻译

    在快速增长的学术大数据背景下,社交网络技术最近引起了学术界和工业界的广泛关注。学术社会网络的概念正是在学术大数据的背景下产生的,指的是由学术实体及其关系形成的复杂的学术网络。有大量的学术大数据处理方法来分析学术社交网络丰富的结构类型和相关信息。现在各种学术数据都很容易获取,这让我们更容易分析和研究学术社交网络。本研究调查了学术社交网络的背景、现状和趋势。我们首先阐述了学术社会网络的概念和相关研究背景。其次,基于节点类型和时效性分析模型。第三,我们回顾分析方法,包括相关的指标,网络属性,和可用的学术分析工具。此外,我们还梳理了一些学术社交网络的关键挖掘技术。最后,我们从行动者、关系和网络三个层面系统地回顾了该领域具有代表性的研究任务。此外,还介绍了一些学术社交网站。本调查总结了当前的挑战和未解决的问题。

    03

    Cerebral Cortex:疼痛热刺激引起的脑功能网络分离与整合

    目前的研究旨在确定热痛期间大脑网络整合/分离的变化,使用高时间分辨率的网络连接事件优化方法。参与者(n = 33)主动判断施加于前臂掌侧的热刺激是否疼痛,然后在每次试验后评价温暖/疼痛强度。我们表明,试验中整合/分离的时间演化与疼痛的主观评级相关。具体来说,大脑在处理疼痛刺激时从隔离状态转变为整合状态。在所有的网络中,与主观疼痛评分的关联发生在不同的时间点。然而,当在较低的时间分辨率下测量时变功能连接时,评分和整合/分离之间的关联程度消失了。此外,与疼痛相关的整合增强在一定程度上可以通过网络之间连接的相对增加来解释。我们的研究结果强调了在单一时间点尺度上研究疼痛和大脑网络连接之间关系的重要性,因为通常使用的连接数据的时间聚合可能导致网络连接的细尺度变化可能被忽视。整合/分离之间的相互作用反映了大脑网络之间信息处理需求的变化,这种适应既发生在认知任务中,也发生在痛感处理中。

    03

    Cytoscape插件2:CytoHubba

    CytoHubba:发现复杂网络的关键目标和子网络 网络对呈现包括PPI,基因调控,细胞路径和信号转导等多种类型生物数据非常有用。我们//+重要性,并且这也能帮助我们发现网络中的中心元素。 cytoHubba根据nodes在网络中的属性进行排名。它提供了11中拓扑分析方法,包括,Degrre度,Edge Percolated component边过滤成分,Maximum neighborhood component,Density of Maximum Neighborhood Component,Maximal Clique Centrality and six centralities(Botteleneck,EcCentricity,Closeness,Radiality,Betweenness, Stress)以上这些基于最短路径,MCC是新提出的方法,在酵母PPI网络中对关键蛋白的预测有更好的表现。比如依据给定的重要性概念对网络中心性对节点进行排名可以发现重要信息。 研究发现,一个蛋白的degree和他的基因的重要性直接相关,换句话说,具有高degree的蛋白更倾向于是关键蛋白。 已经有几个插件可以对网络数据进行节点排名,比如NetworkAnalyzer和CentiScaPe,他们可以计算有向或无向网络的拓扑参数。这些插件比其他常用的插件提供了更多的中心性测定指标,但是一些其他重要的特性和最近发展的方法他们并未包括进去。不同的方法聚焦不同的拓扑特点或者,相似的特征有着不同的计分策略。为了让生物工作者对网络特点的利用更加辩解,我们编写了cytoHubba插件以执行我们最新发展的算法和几个流行的算法。 加强的node 获取功能控制面板可以帮助研究者搜索和探索网络,并且可以提取感兴趣的子网络。 使用方法 CytoHubba界面提供了一个简单的交互界面有11个得分方法的分析界面。 首先,所有11中方法在每个node中的得分都会被赋予,当然前提是加载了PPI网络,并执行了“compute hubba result”功能。

    01

    人类如何学习和表征网络?

    人类以一系列离散的项目接收来自周围世界的信息——从语言中的单词或音乐中的音符到书籍和互联网网站中的抽象概念。为了模拟他们的环境,从年轻时起,人们就被要求学习由这些项目(节点)形成的网络结构以及它们之间的联系(边)。但是,当人类只经历单个项目的序列时,他们如何发现网络的大规模结构?此外,人们对这些网络的内部地图和模型是什么样的?在这里,我们介绍图形学习,这是一个不断发展和跨学科的领域,研究人类如何学习和表示他们周围世界的网络。具体来说,我们回顾了在理解人们如何发现项目序列背后复杂的关系网方面的进展。我们首先描述已建立的结果,这些结果表明人类可以检测到精细尺度的网络结构,例如项目之间转换概率的变化。接下来,我们将介绍直接控制转移概率差异的最新实验,证明人类行为关键取决于网络的中尺度和宏观尺度特性。最后,我们介绍了人类图形学习的计算模型,这些模型对网络结构对人的行为和认知的影响做出了可测试的预测。我们始终强调图形学习研究中的开放性问题,这些问题需要认知科学家和网络科学家的创造性见解。

    03

    社交网络的度中心性与协调的神经活动有关

    趋同处理可能是促进社会联系的一个因素。我们使用神经成像和网络分析来调查大一学生在观看自然的视听刺激(即视频)时社交网络地位(通过度中心性测量)和神经相似性之间的联系。参与社交网络研究的学生有119名;其中63人参与了神经成像研究。我们发现,在与高级解读和社会认知相关的脑区(例如,默认模式网络),高度中心性的个体彼此间以及与同龄人之间有相似的神经反应,而低度中心性的个体表现出更多样化的反应。被试自我报告对刺激的享受程度和感兴趣程度遵循类似的模式,但这些数据并没有改变我们的主要结果。这些发现表明,对外部刺激的神经处理过程在高度中心性的个体中是相似的,但在低度中心性的个体中是特殊的。本文发表在Nature Communications杂志。

    02
    领券