首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Python和OpenCV检测图像中的多个亮点

今天的博客文章是我几年前做的一个关于寻找图像中最亮点的教程的后续。 我之前的教程假设在图像中只有一个亮点你想要检测... 但如果有多个亮点呢?...如果您想在图像中检测多个亮点,代码会稍微复杂一点,但不会太复杂。不过不用担心:我将详细解释每一个步骤。 看看下面的图片: ? 在这幅图中,我们有五个灯泡。...阈值化后,我们得到如下图像: ? 注意图像的明亮区域现在都是白色的,而其余的图像被设置为黑色。...然而,在这幅图像中有一点噪声(即,小斑点),所以让我们通过执行一系列的腐蚀和膨胀操作来清除它: # perform a series of erosions and dilations to remove...下面我提供了一个GIF动画,它可视化地构建了每个标签的labelMask。使用这个动画来帮助你了解如何访问和显示每个单独的组件: ? 然后第15行对labelMask中的非零像素进行计数。

4.1K10

使用扩散模型从文本提示中生成3D点云

摘要 虽然最近关于根据文本提示生成 3D点云的工作已经显示出可喜的结果,但最先进的方法通常需要多个 GPU 小时来生成单个样本。这与最先进的生成图像模型形成鲜明对比,后者在几秒或几分钟内生成样本。...我们的方法首先使用文本到图像的扩散模型生成单个合成视图,然后使用以生成的图像为条件的第二个扩散模型生成 3D 点云。...为了将我们所有的数据转换为一种通用格式,我们使用 Blender(Community,2018)从 20 个随机摄像机角度将每个 3D 模型渲染为 RGBAD 图像,Blender 支持多种 3D 格式并带有优化的渲染引擎...通过直接从渲染构建点云,我们能够避免尝试直接从 3D 网格采样点时可能出现的各种问题,例如模型中包含的采样点或处理以不寻常文件格式存储的 3D 模型 。...由于我们的 3D 数据集与原始 GLIDE 训练集相比较小,因此我们仅在 5% 的时间内从 3D 数据集中采样图像,其余 95% 使用原始数据集。

1.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用workflow一次完成多个模型的评价和比较

    前面给大家介绍了使用tidymodels搞定二分类资料的模型评价和比较。 简介的语法、统一的格式、优雅的操作,让人欲罢不能! 但是太费事儿了,同样的流程来了4遍,那要是选择10个模型,就得来10遍!...无聊,非常的无聊。 所以个大家介绍简便方法,不用重复写代码,一次搞定多个模型!...本期目录: 加载数据和R包 数据预处理 选择模型 选择重抽样方法 构建workflow 运行模型 查看结果 可视化结果 选择最好的模型用于测试集 加载数据和R包 首先还是加载数据和R包,和前面的一模一样的操作...直接选择4个模型,你想选几个都是可以的。...~ 是不是很神奇呢,完美符合一次挑选多个模型的要求,且步骤清稀,代码美观,非常适合进行多个模型的比较。

    1.5K50

    这个面部3D重建模型,造出了6000多个名人的数字面具

    该模型基于自监督学习,使用了来自 YouTube 抓取的 6000 多个名人的视频片段进行训练;其能以任意帧数重建人脸面部,适用于单目和多帧重建。...研究者使用了 VoxCeleb2 多帧视频数据集来训练模型。该数据集包含从 Youtube 抓取的 6000 多个名人的超过 140k 部视频。...总之,本研究基于以下技术贡献: 一种深度神经网络,其从包含每个目标的多个帧的无约束图像的大数据集中学习面部形状和外观空间,例如多视图序列,甚至单目视频。...我们只使用从互联网收集的未经标记(in-the-wild)视频片段来学习面部模型。几乎无穷无尽的训练数据源可以学习高度通用的 3D 人脸模型。...为了实现这一点,我们提出了一种新颖的多帧一致性损失,确保在目标面部的多个帧上保持一致的形状和外观,从而最小化深度模糊。在测试时,我们可以使用任意数量的帧,这样我们就可以执行单目和多帧重建。 ?

    1.6K60

    【Unity3D】使用 FBX 格式的外部模型 ② ( FBX 模型与默认 3D 模型的区别 | FBX 模型贴图查找路径 | FBX 模型可设置多个材质 )

    文章目录 一、FBX 模型与默认 3D 模型的区别 二、FBX 模型贴图查找路径 三、FBX 模型可设置多个材质 在 FBX 文件中包含了 网格 , 材质 , 纹理贴图 信息 ; 网格 Mesh : 表示...3D 物体的 形状 ; 材质 Material : 表示 3D 物体的 表面特性 ; 纹理贴图 Texture : 定义 3D 物体 表面的 像素颜色 , 一般是一张图片 ; 一、FBX 模型与默认...层级窗口中 , 可以在 视图中心点 位置 , 直接创建一个 3D 模型 ; 选择 " 菜单栏 | GameObject | 3D Object | Cube " 选项 , 创建一个立方体 , 可以看到从外部导入的...3D 模型 , 显示的图标为 样式 , 系统自带的 3D 模型 , 显示的图标样式为 ; 系统默认的 3D 模型 , 选中后 , 右侧 Inspector 检查器窗口 显示内容如下 :...: 三、FBX 模型可设置多个材质 ---- 在 Unity 中 , 一个 3D 物体中可以设置多个材质 , 为不同的部位设置不同的材质 , 如下图所示 :

    2.7K10

    使用MergeKit创建自己的专家混合模型:将多个模型组合成单个MoE

    最后将用MergeKit制作自己的frankenMoE,并在几个基准上对其进行评估。 MOE 混合专家是为提高效率和性能而设计的体系结构。它使用多个专门的子网,称为“专家”。...由于模型的复杂性,微调moe过程可能很困难,需要在训练期间平衡专家的使用,以适当地训练门控权重以选择最相关的权重。...但是我们今天要介绍的frankenMoEs只升级现有的模型,然后初始化路由器。 也就是说我们从基本模型中复制大多数的权重(LN和注意力层),然后再复制每个专家中的FFN层的权重。...这里将使用Mistral-7B,因为它的尺寸合适,并且也经过了测试是目前比较好的模型。像Mixtral这样的8个专家有点多了,所以在本例中我们将使用总共四个专家,每个令牌和每个层使用其中两个专家。...可以看到我们都是选择的基于mistral - 7b的模型,因为这是MergeKit的要求,模型的架构必须要一致,所以除了我们以上的方法以外还可以选择使用不同数据进行微调的模型,只要模型表现有差异即可,但是最重要的一点是模型架构必须相同

    40410

    基于RGB-D多相机的实时3D动态场景重建系统

    尽管 Azure Kinect 是前两代相机的继承者,但由于 Azure Kinect 在 2020 年 3 月才发布,Kinect v2 相机仍然是研究中使用最广泛的传感器。...相机标定分为两步:基于 2D marker的粗略标定和基于 3D 匹配点的精细标定。 粗标定 在粗标定环节,我们使用了[2]中使用的 marker 进行标定。...图4 marker示意图 在标定过程中,世界坐标系原点建立在marker的中心,每个相机会检测黑白交界处的角点,得到其在图像中的像素坐标,进一步根据深度图和相机内参得到角点在相机坐标系中的 3D 坐标,...后处理 后处理主要包括了点云的滤波,用于抑制点云的噪声。由于 TOF 相机的限制,Kinect v2 深度图中存在很多缺失和不稳定的像素,因此重建的模型包含大量噪声。...考虑到深度图的像素和3D点是一一对应的,深度像素之间的邻域关系代表了3D空间点的拓扑结构,因此对于深度像素中的每个点,在给定的邻域内比较其与周围像素的距离差异,只有满足一定的距离约束,才会将其保留,否则将其作为噪点去除

    3.3K70

    GT Transceiver中的重要时钟及其关系(3)多个外部参考时钟使用模型

    前言 上篇文章:https://reborn.blog.csdn.net/article/details/120734750 给出了单个外部参考时钟的使用模型,这篇是姊妹篇,多个外部参考时钟的使用模型...正文 同样,分多种情况: 情形1:同一个QUAD中,多个GTX Transceiver使用多个参考时钟 每个QUAD有两个专用的差分时钟输入引脚(MGTREFCLK0[P/N]或 MGTREFCLK1...在多个外部参考时钟使用模型中, 每个专用的参考时钟引脚对必须例化它们对应的IBUFDS_GTE2,以使用这些专用的参考时钟资源。...如下图所示: 在同一个QUAD中,多个GTX Transceiver使用多个参考时钟。...下图展示了一个例子: 不同QUAD中,多个GTX Transceiver 使用多个参考时钟 一个QUAD的Transceiver如何通过使用 NORTHREFCLK 和 SOUTHREFCLK管脚从另一个

    1.6K10

    SegICP:一种集成深度语义分割和位姿估计的框架

    然后使用带有标记的图像分割出相应的点云,并为每个检测到的对象生成单独的点云。然后使用ICP将每个对象的点云与其完整的点云数据库模型进行配准,并估计目标对象相对于传感器的姿态。...该网络使用交叉熵标准结合由图像旋转、裁剪、水平和垂直翻转组成的数据增强,对裁剪和下采样后图像进行训练。 C 多假设目标姿态估计: 分割结果用于从场景云中提取每个对象的3D点云。...然后使用SegNet预测的每个分割对象的语义标签,并从对象模型库中检索其相应的3D网格模型。网格模型被转换为点云形式后进行下采样并针对其各自的分割点云进行配准。 其中,点云配准分为获取和跟踪两个阶段。...在这些图像中,大约三分之二是由人类手工标记(使用LabelMe),而剩下的三分之一是由3D InvestigatorTM动作捕捉(MoCap)系统和放置在相机和物体上的活动标记自动生成(如图 4所示)。...考虑到图像训练涉及多个传感器硬件(Microsoft Kinect1、Asus Xtion Pro Live、Microsoft Kinect2 和 Carnegie Robotics Multisense

    84440

    是和VR抢蛋糕,还是配合VR分蛋糕? ——浅谈三维重建和应用

    3、逆向工程,逆向工程与普通的加工过程相反,实现的是从真实物体到数字模型的转换,如木制家具雕刻图案的仿制等,配合目前正兴起的3D打印技术,可以实现快速的实物复制。...同时,目前的VR场景都是虚拟的,是由程序构造而成的,我们可以利用三维重建技术,将现实的场景引入到我们的虚拟世界当中,例如构造一座真实的腾讯大厦,模拟站在腾讯大厦的最顶端俯瞰全深圳。...而双目立体视觉是利用双摄像机得到三维建模模型。RealSense和Kinect2.0都是采用主动光的结构法获取深度信息,而123d catch则是利用被动光的获取且结合点云拼接的技术得到。...图5 成像模型 空间物体一点M到图像上一点m的关系依靠P矩阵来连接,而相机的标定就是获取P矩阵。...图11 三维点云 2 结构光的三维重建技术 主动光的三维重建技术是目前主流产品所使用的三维重建技术,RealSense,Kinect都是采用的红外结构光面覆盖物体表面,利用一个或两个感知红外结构光的被称为

    1.5K50

    三维重建技术综述

    所有在实际使用中较为少见。 2.阴影恢复形状法 SFS(Shape From Shading,从阴影恢复形状)法也是一种较为常用的方法。...三位重建流程 使用Kinect采集景物的点云数据,经过深度图像增强、点云计算与配准、数据融合、表面生成等步骤,完成对景物的三维重建。 ? 对获取到的每一帧深度图像均进行前六步操作,直到处理完若干帧。...预处理后的深度图像具有二维信息,像素点的值是深度信息,表示物体表面到Kinect传感器之间的直线距离,以毫米为单位。...以Kinect传感器的初始位置为原点构造体积网格,网格把点云空间分割成极多的细小立方体,这种立方体叫做体素(Voxel)。...下载2 在「3D视觉工坊」公众号后台回复:3D视觉github资源汇总,即可下载包括结构光、标定源码、缺陷检测源码、深度估计与深度补全源码、点云处理相关源码、立体匹配源码、单目、双目3D检测、基于点云的

    2.7K12

    使用mlr3搞定二分类资料的多个模型评价和比较

    前面介绍了使用tidymodels进行二分类资料的模型评价和比较,不知道大家学会了没?...本期目录: 加载R包 建立任务 数据预处理 选择多个模型 建立benchmark_grid 开始计算 查看模型表现 结果可视化 选择最好的模型 加载R包 首先还是加载数据和R包,和之前的数据一样的。...选择多个模型 还是选择和之前一样的4个模型:逻辑回归、随机森林、决策树、k最近邻: # 随机森林 rf_glr >% lrn("classif.ranger...接下来就是选择10折交叉验证,建立多个模型,语法也是很简单了。...开始计算 下面就是开始计算,和tidymodels相比,这一块语法更加简单一点,就是建立benchmark_grid,然后使用benchmark()函数即可。

    99630

    三维重建技术概述_CT三维重建不包括

    通常所使用的点云数据一般包括点坐标精度、空间分辨率和表面法向量等内容。点云一般以PCD格式进行保存,这种格式的点云数据可操作性较强,同时能够提高点云配准融合的速度。...---- 2.三维重建流程 ---- 本文使用Kinect采集景物的点云数据,经过深度图像增强、点云计算与配准、数据融合、表面生成等步骤,完成对景物的三维重建。...2.3 点云计算 经过预处理后的深度图像具有二维信息,像素点的值是深度信息,表示物体表面到Kinect传感器之间的直线距离,以毫米为单位。...以Kinect传感器的初始位置为原点构造体积网格,网格把点云空间分割成极多的细小立方体,这种立方体叫做体素(Voxel)。...CUDA具有线程(Thread)、程序块(Block)、网格(Grid)三级架构,计算过程一般由单一的网格完成,网格被平均分成多个程序块,每个程序块又由多个线程组成,最终由单个线程完成每个基本运算,如图

    1K20

    三维重建技术概述

    ---- 2.三维重建流程 本文使用Kinect采集景物的点云数据,经过深度图像增强、点云计算与配准、数据融合、表面生成等步骤,完成对景物的三维重建。...2.3 点云计算 经过预处理后的深度图像具有二维信息,像素点的值是深度信息,表示物体表面到Kinect传感器之间的直线距离,以毫米为单位。...以Kinect传感器的初始位置为原点构造体积网格,网格把点云空间分割成极多的细小立方体,这种立方体叫做体素(Voxel)。...CUDA具有线程(Thread)、程序块(Block)、网格(Grid)三级架构,计算过程一般由单一的网格完成,网格被平均分成多个程序块,每个程序块又由多个线程组成,最终由单个线程完成每个基本运算,如图...对于Kinect在实际生产生活中的应用奠定了基础 小结 首先介绍了与三维重建相关的基本概念,包括深度图像、点云数据、四种坐标系及其之间的转换关系等。

    1.2K10

    机器人收集 + Keypose 算法:准确估计透明物体的 3D 姿态

    左图:透明物体的 RGB 图像;右图:左侧场景的深度重建效果四格图,上排为深度图像,下排为 3D 点云,左侧图格采用深度相机重建,右侧图格是 ClearGrasp 模型的输出。...然后开始训练深度模型(称为 KeyPose),从单目或立体图像中估计端到端 3D 关键点,而不明确计算深度。...在右侧,我们将 3D 瓶子模型中的点可视化,并放置在由预测 3D 关键点确定的姿态上。...,从 RGB 图像中可以准确估计透明物体的 3D 姿态。...经过验证,立体图像可以作为前期融合 Deep Net 的输入。在其中,网络被训练为直接从立体对中提取稀疏 3D 关键点。我们希望提供广泛的带标签透明物体数据集,推动这一领域的发展。

    87320

    一文读懂:图卷积在基于骨架的动作识别中的应用

    此前的 kinect SDK 在 ubuntu 系统上运行需要使用开源的 libfreenect2。 链接:https://github.com/OpenKinect/libfreenect2 2....第二种方式是通过图像配合骨架提取算法来从视频中获取骨架序列,但是提取到的骨架坐标是在图像中的 2 维坐标。...作者在文章中给出了多种卷积的策略,有兴趣的读者可以参考原论文了解其数学模型。...spectral-based graph convolution networks,并且也使用了双流的网络结构,一个网络处理点(joint)的信息,另一个网络处理边 (bone) 的信息: ?...从维度上考虑,有时间维度和空间维度;从特征上考虑,有一次信息关节点的 3D 坐标(传感器+SDK 直接获取),有二次信息关节边的向量表示;从连接上考虑,可以学习关节点之间语义上连接的强弱(将连接设置为

    1.7K21

    机器人SLAM算法漫谈

    一方面,编写和使用视觉SLAM需要大量的专业知识,算法的实时性未达到实用要求;另一方面,视觉SLAM生成的地图(多数是点云)还不能用来做机器人的路径规划,需要科研人员进一步的探索和研究。...它采到的图像是这个样子的(从左往右依次为rgb图,深度图与点云图): ?   Kinect的一大优势在于能比较廉价地获得每个像素的深度值,不管是从时间上还是从经济上来说。...OK,有了这些信息,小萝卜事实上可以知道它采集到的图片中,每一个点的3d位置。只要我们事先标定了Kinect,或者采用出厂的标定值。   ...实际值会有一点偏差,但不会太大。 4. 定位问题   知道了Kinect中每个点的位置后,接下来我们要做的,就是根据两帧图像间的差别计算小萝卜的位移。...从SLAM诞生开始科学家们就一直在解决这个问题。最初,我们用Kalman滤波器,所以上面的模型(运动方程和观测方程)被建成这个样子。

    2.3K161

    当机器学习遇上计算机视觉

    但是也已取得显著进展,并且随着机器视觉算法商业化的成功,机器视觉产品已经开始拥有广泛的用户,包括图像分割(例如微软office中去除图片背景的功能)、图像检索、人脸检测对焦和Kinect的人体运动捕捉等...有了这项技术,我们已经能够成功处理这些不同的问题,如照片的语义分割,街头的场景分割,人体解剖学的3D医学扫描图像分割,摄像头的重定位和使用Kinect深度摄像头对人体身体部位的划分。...谁也说不准会有哪些突破,但我们会为你预测一些我们认为很有可能实现的突破点: 语义分析:以上的网络模型只能学会理解图像内容的表意,而不能深入理解图像中各个物体、物体之间如何相互联系以及特定物体在生活情景中的作用...像微软CoCo这样的新型测试数据集就可以帮助增强语义分析。该数据集对抽象图像提供非常详尽的分类标注,例如包含多个主体的图像会被标记出不重要的部分。...你可以认为决策有向无环图是子节点相通的决策树,因此一个子节点可以存在多个父节点。我们不但证明了这种模型在内存消耗上比决策树降低了一个数量级,同时还能大大提高模型的泛化能力。

    554140

    学界 | 牛津大学ICCV 2017 Workshop论文:利用GAN的单视角图片3D建模技术

    常见的方法是使用 Kinect 和 RealSense 这样的低成本探测设备从抓取到的景深图片中进行 3D 建模,此类方法通常需要抓取大量不同视角的景深图片。...这是一项非常具有挑战性的工作,对目标物体的不完整观察理论上可以延伸出无限多种 3D 模型的可能性。传统重构方法通常使用插值技术,如平面消差、泊松面估计来估算背面的 3D 结构。...具体地,表示为 I 的输入和表示为 Y 的输出 3D 形状在网络中使用了 643 个占用网格。输入形状直接由单一深度图像算出。 输入形状直接来自单一深度图片的计算。...,它使用生成对抗网络从单个任意深度视图重建给定对象的完整 3D 结构。...与通常需要同一张图片从多个角度或多类标签来还原完整 3D 结构的方式不同,我们提出的 3D-RecGAN 只需要获得对象深度视图的立体像素表示输入,即可生成目标物体包含 3D 填充/缺失区域的网格模型。

    1.2K80
    领券