首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

马尔可夫性质、马尔可夫链和马尔可夫过程

,逐渐发展到对随机变量的研究,终于提出了大名鼎鼎的马尔可夫链概率模型。...这就是被后人称作马尔科夫链的著名概率模型。也是在这篇论文里,马尔科夫建立了这种链的大数定律。随着发展,马尔可夫链被扩大到随机过程的一种,即马尔可夫过程。...马尔可夫链:是一种最简单的马尔可夫过程,专指离散指数集的马尔可夫过程。...马尔可夫链极其扩展被广泛的应用,如物理学和化学中,马尔可夫链和马尔可夫过程被用于对动力系统进行建模,形成了马尔可夫动力学(Markov dynamics)。...人类历史上第一个从理论上提出并加以研究的过程模型是马尔科夫链,它是马尔科夫对概率论乃至人类思想发展作出的伟大贡献。

1.8K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    马尔可夫链

    马尔可夫链是满足马尔可夫性质的随机过程,本文记录相关内容。 简介 马尔可夫链 X_{1}, X_{2}, \cdots 描述了一个状态序列,其中每个状态值取决于前一个状态。...) 马尔可夫链示例 设定 社会学家把人按照经济状况分成三类:下层、中层、上层。...平稳分布 马尔可夫链定理 如果一个非周期马尔可夫链具有转移概率矩阵P​ ,且它的任何两个状态是联通的,则有: image.png 其中: 1,2, \cdots, j, \cdots ​ 为所有可能的状态...称概率分布 \vec{\pi} ​ 为马尔可夫链的平稳分布。 在马尔可夫链定理中: 马尔可夫链的状态不要求有限, 可以是无穷多个。 非周期性在实际任务中都是满足的。...收敛 从初始概率分布 \vec{\pi}_{0} 出发, 在马尔可夫链上做状态转移, 记时刻 i 的状态 X_{i} 服从的概率分布为 \vec{\pi}_{i} , 记作 X_{i}

    1K10

    马尔可夫网络、马尔可夫模型、马尔可夫过程

    如果这个图退化成线性链的方式,则得到马尔可夫模型;因为每个结点都是随机变量,将其看成各个时刻(或空间)的相关变化,以随机过程的视角,则可以看成是马尔可夫过程。...若上述网络是无向的,则是无向图模型,又称马尔可夫随机场或者马尔可夫网络。 如果在给定某些条件的前提下,研究这个马尔可夫随机场,则得到条件随机场。...马尔可夫模型 2.1 马尔可夫过程 马尔可夫过程(Markov process)是一类随机过程。它的原始模型马尔可夫链,由俄国数学家A.A.马尔可夫于1907年提出。...隐马尔可夫模型(HMM) 在某些情况下马尔科夫过程不足以描述我们希望发现的模式。回到之前那个天气的例子,一个隐居的人可能不能直观的观察到天气的情况,但是有一些海藻。...第三个问题就是根据一个可以观察到的状态序列集产生一个隐马尔科夫模型(学习)。

    2.7K20

    MCMC之马尔可夫链

    但蒙特卡罗方法需要得到对应的概率分布的样本集,而对于某些概率分布,得到这样的样本集很困难,因此本篇我们将介绍马尔可夫链来解决这种问题。 1.马尔可夫链简介 ?...那么马尔科夫链模型的状态转移矩阵和蒙特卡罗方法所需要的概率分布样本集有什么关系呢? 2.马尔可夫链状态转移矩阵性质 得到马尔可夫链状态转移矩阵,我们看看马尔可夫链模型状态转移矩阵的性质。...即最终的状态概率分布会趋于同一个稳定概率分布[0.625, 0.3125, 0.0625],也就是说,马尔可夫链的状态转移矩阵收敛到稳定概率分布与初始状态概率分布无关。...上述结果是一个非常好的形式,比如我们得到了稳定概率分布所对应的马尔可夫链模型的状态转移矩阵,那么可以用任意的概率分布样本开始,带入马尔可夫链状态转移矩阵,然后就可以得到符合对应稳定概率分布的样本。...3.基于马尔可夫链采样 ? 4.马尔可夫链总结 如果假定我们可以得到所需要采样样本的平稳分布所对应的马尔可夫链状态转移矩阵,那么我们就可以用马尔可夫链采样得到我们需要的样本集,进而进行蒙特卡罗模拟。

    96830

    理解AI中的马尔可夫链

    马尔科夫链在解决问题时有什么用?当你想对处于离散状态的事物建模时,David Eastman 写道。...马尔可夫是一位俄罗斯数学家(也是一名出色的国际象棋选手),他在过程和概率方面的研究早于现代计算,但此后一直被人们心存感激地利用。...以下是维基百科对马尔可夫链的定义:“马尔可夫链或马尔可夫过程是一个随机模型,描述一系列可能的事件,其中每个事件的概率仅取决于前一个事件中达到的状态。”...那么,什么时候马尔可夫链对于解决问题是有用的呢?基本上,当你想要对处于离散状态的事物进行建模时,但你不知道它是如何工作的。 你可能会想,“但约翰知道他在做什么,不是吗?”...马尔可夫链在人工智能中的应用 马尔可夫链被用于预测文本的设计。随着模型获得并输入更多单词,一组新的统计数据将附加到更新的马尔可夫链中。 注意,即使添加了额外的单词,字母表中的字母也不会改变。

    23010

    隐马尔可夫模型

    时刻是si+1的概率 马尔科夫链假设: 转移矩阵和t没有关系,不同时刻aij方程一样 下一状态只和上一状态有关,和更早之前没有关系 多步马尔科夫链:下一状态和前几个状态有关。...比如识别1到10的系统,建立了10个隐含马尔可夫模型,然后输入一个数字,让系统检测。 对每一个模型求一个概率,哪个模型的概率大,就认为这个数字属于哪个模型。 乍一看,这个问题很简单。...因为我们知道所有的隐藏状态之间的转移概率和所有从隐藏状态到观测状态生成概率,那么我们是可以暴力求解的。...训练问题(学习问题) b参数的更新: 隐马尔可夫简单例子 假设我们想知道某个固定的地区一些年来的平均年平均气温。 为了简化问题,仅会考虑两种年平均温度,"hot"和"cold"。...likely)的马尔科夫过程状态链(注:也即这四年气温情况分别是怎样的),也就是问题2。

    50320

    从马尔科夫链到吉布斯采样与PageRank

    不论吉布斯采样还是PageRank,state的分布本质上都是马尔科夫链,而最后都希望state的分布是独一并且稳定的。 ?...上图表示了一个典型的马尔科夫链,每个城市A、B、C代表不同的state。该图描述了不同state间的转移变化关系。并且下一个时间的state只和上一个时间的state有关。...稳定态 想象上述的马尔科夫链,state不停的变化,我们可以求出不同state的概率,也就是state的概率分布。 最简单的办法是列出不同state的概率公式,然后解线性方程组求解,如下: ?...{z^1,z^2,z^3,...}相当于马尔科夫链中不同的state(因为ztz^t只和zt−1z^{t-1}有关)。...如果马尔科夫链存在单一且稳定的状态分布,那么就可以通过采样求出P(z)(z=z1,...,zN)P(z) (z = {z_1,...,z_N})。

    1.7K60

    马尔可夫(Markov)相关

    概念 马尔可夫(Markov)相关概念包括马尔可夫过程(Markov Process),马尔可夫奖赏过程(Markov Reward Process),马尔可夫决策过程(Markov Decision...我们说他们都是具有马尔可夫性质(Markov Property)的,然后MRP就是再加上奖赏过程,MDP就是再加上决策过程。那么什么是马尔可夫性质呢?...1)Policy(策略,π):我们第一部分也介绍了策略是什么,他就是agent的一个行动指南,即在什么状态有多少概率去采取什么行动,是一个s到a的映射。所以策略是依赖于当时所处的状态的。...同样,具体涉及到计算方面我们还是用Bellman Equation的“两部走”分解思想。...3)上边我们从状态价值函数【v(s)】具体到在策略π下的Value Function【Vπ(s)】,又具体到在策略π下采取行动a的行动价值函数【qπ(s,a)】,下面我们再递进一下,我们做这么多的终极目标是什么

    98800

    隐马尔可夫模型

    这些可观测变量组成可观测状态链。 同时,在隐马尔可夫模型中还有一条由隐变量组成的隐含状态链,在本例中即骰子的序列。比如得到这串数字骰子的序列可能为[D6 D8 D8 D6 D4 D8]。 ?...这就是马尔可夫链,即系统的下一时刻的状态仅由当前状态决定不依赖以往的任何状态(无记忆性),“齐次马尔可夫性假设”。 2 隐马尔可夫模型三要素 对于一个隐马尔可夫模型,它的所有N个可能的状态的集合 ?...隐马尔可夫模型三要素: 状态转移概率矩阵A, ? 下一时刻t+1状态为 ? 的概率 观测概率矩阵B, ? ,生成观测值 ? 的概率 初始状态概率向量π, ?...一个隐马尔可夫模型可由λ=(A, B, π)来指代。 3 隐马尔可夫模型的三个基本问题 (1) 给定模型λ=(A, B, π),计算其产生观测序列 ?...4 三个基本问题的解法 基于两个条件独立假设,隐马尔可夫模型的这三个基本问题均能被高效求解。

    57321

    马尔可夫链蒙特卡洛(MCMC)算法

    在之前的推送中我们了解到什么是马尔可夫链(Markov Chain)。...下面我们来介绍一下马尔可夫链蒙特卡洛算法(Markov Chain Monte Carlo), 在此之前,我们需要回顾一下马尔可夫链的极限分布(limiting behavior)。...对于一个不可约非周期性的马尔可夫链,其转移矩阵为P,当经过t->inf 步之后,其状态概率收敛于固定值, 即: Screenshot (43).png 则转移矩阵 ?...以下我们所提到的两种算法都用到马尔可夫链的极限分布。 马尔可夫链蒙特卡洛(MCMC)算法的产生是为了解决计算机产生随机数的问题。...Metropolis-Hastings(M-H)算法的主要思路是构建一个马尔可夫链,其最终收敛的平稳分布恰好是我们想要的目标分布p(x)。

    3.2K90

    人工智能马尔可夫模型_高斯马尔科夫模型

    马尔可夫模型: 马尔可夫模型MM(MarkovModel)是一种统计模型。它的原始模型马尔可夫链,马尔可夫链是与马尔可夫过程紧密相关。...对于连续的情况,我们会在下面继续说) 也许我们需要再次重申一下这个原理,马尔可夫链状是态空间中经过从一个状态到另一个状态的转换的随机过程。...马尔可夫链性质: 其每个状态值取决于前面有限个状态。运用马尔可夫链只需要最近或现在的知识便可预测将来。...隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生。...隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。其难点是从可观察的参数中确定该过程的隐含参数。

    97030

    隐马尔可夫模型攻略

    谈到 HMM,首先简单介绍一下马尔可夫过程 (Markov Process),它因俄罗斯数学家安德烈·马尔可夫而得名,代表数学中具有马尔可夫性质的离散随机过程。...马尔可夫链是随机变量 X1, … , Xn 的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而 Xn 的值则是在时间 n 的状态。...上面这个恒等式可以被看作是马尔可夫性质。   马尔可夫链的在很多应用中发挥了重要作用,例如,谷歌所使用的网页排序算法(PageRank)就是由马尔可夫链定义的。...这就是本文重点介绍的隐马尔可夫模型。   隐马尔可夫模型 (Hidden Markov Model) 是一种统计模型,用来描述一个含有隐含未知参数的马尔可夫过程。...假设1:马尔可夫假设(状态构成一阶马尔可夫链) ?   假设2:不动性假设(状态与具体时间无关) ?   假设3:输出独立性假设(输出仅与当前状态有关) ?

    1.2K110

    渠道归因(二)基于马尔可夫链的渠道归因

    渠道归因(二)基于马尔可夫链的渠道归因 在应用当中,序列中的每个点通常映射为一个广告触点,每个触点都有一定概率变成真正的转化。通过这种建模,可以选择最有效,概率最高的触点路径。...本文主要参考自python实现马尔可夫链归因[1]。 马尔可夫链是一个过程,它映射运动并给出概率分布,从一个状态转移到另一个状态。...马尔可夫链由三个属性定义: 状态空间:处理可能存在的所有状态的集合 转移概率:从一个状态转移到另一个状态的概率 当前状态分布 :在过程开始时处于任何一个状态的概率分布 那么用户行为路径中的每个渠道可以看作这里的每个状态...所以马尔可夫链模型可以用来做归因分析。...共勉~ 参考资料 [1] python实现马尔可夫链归因: https://mattzheng.blog.csdn.net/article/details/117296062

    48340
    领券