首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用 Python 从单个文本中提取关键字的四种超棒的方法

本文关键字:关键字提取、关键短语提取、Python、NLP、TextRank、Rake、BERT 在我之前的文章中,我介绍了使用 Python 和 TFIDF 从文本中提取关键词,TFIDF 方法依赖于语料库统计来对提取的关键字进行加权...虽然可以在文章的全文中提取,但这里为了简单起见,语料数据仅限于摘要。 文本准备 标题通常与提供的文本相结合,因为标题包含有价值的信息,并且高度概括了文章的内容。...Yake 它是一种轻量级、无监督的自动关键词提取方法,它依赖于从单个文档中提取的统计文本特征来识别文本中最相关的关键词。该方法不需要针对特定的文档集进行训练,也不依赖于字典、文本大小、领域或语言。...Rake Rake 是 Rapid Automatic Keyword Extraction 的缩写,它是一种从单个文档中提取关键字的方法。...每个短语可以再通过空格分为若干个单词,可以通过给每个单词赋予一个得分,通过累加得到每个短语的得分。Rake 通过分析单词的出现及其与文本中其他单词的兼容性(共现)来识别文本中的关键短语。

6.4K10

特征工程(二) :文本数据的展开、过滤和分块

关于乌鸦的描述呢?Emma的行为呢,敲门,退后一步,打招呼呢? 本章介绍文本特征工程的基础知识。我们从词袋(bags of words)开始,这是基于字数统计的最简单的文本功能。...最常用的单词最可以揭示问题,并突出显示通常有用的单词通常在该语料库中曾出现过多次。 例如,纽约时报语料库中最常见的词是“时代”。实际上,它有助于将基于频率的过滤与停用词列表结合起来。...但是,如何从文本中发现并提取它们呢?一种方法是预先定义它们。如果我们努力尝试,我们可能会找到各种语言的全面成语列表,我们可以通过文本查看任何匹配。这将是非常昂贵的,但它会工作。...因此,短语检测(也称为搭配提取)的似然比检验提出了以下问题:给定文本语料库中观察到的单词出现更可能是从两个单词彼此独立出现的模型中生成的,或者模型中两个词的概率纠缠? 这是有用的。让我们算一点。...定义单词到词类的模型通常是语言特定的。 几种开源 Python 库(如 NLTK,Spacy 和 TextBlob)具有多种语言模型。

2K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NLTK 基础知识总结

    在Python的基础上开发的一个模块,至今已有超过十万行的代码。...这是一个开源项目,包含数据集、Python模块、教程等; 如何安装 详情可以参见我的另一篇博客NLP的开发环境搭建,通过这篇博客,你将学会Python环境的安装以及NLTK模块的下载; 常见模块及用途...搜索文本 单词搜索: 相似词搜索; 相似关键词识别; 词汇分布图; 生成文本; 计数词汇 #!...; 模块化; NLTK中的语料库 古腾堡语料库:gutenberg; 网络聊天语料库:webtext、nps_chat; 布朗语料库:brown; 路透社语料库:reuters; 就职演说语料库:inaugural...; 其他语料库; 文本语料库结构 isolated: 独立型; categorized:分类型; overlapping:重叠型; temporal:暂时型; 基本语料库函数 条件频率分布 总结 以上就是自然语言处理

    62020

    如何将任何文本转换为图谱

    图增强生成(GAG)可以在一定程度上解决RAG的这些缺点。更好的是,我们可以混合搭配,构建一个图增强检索增强生成的流程,以获得两者的最佳效果。...因此,现在我们知道图是有趣的,它们可以极其有用,而且它们看起来也很美丽。 创建概念图 如果你问GPT,如何从给定的文本中创建知识图谱?它可能会建议以下类似的过程。 1.从作品中提取概念和实体。...这是我设计的从任何给定文本语料库中提取概念图的方法的流程图。它与上述方法类似,但也有些许不同之处。 图表由作者使用draw.io创建 1.将文本语料库拆分为块。...这样,任意不同的概念对之间只有一条边。该边拥有一定的权重和一串关系作为其名称。你可以在我在本文中分享的GitHub存储库中看到此方法的Python代码实现。...SYS_PROMPT = ( "您是一个网络图形制作者,可以从给定的语境中提取术语及其关系。" "您会被提供一个语境块(由```分隔)。您的任务是提取给定语境中提及的术语的本体论。

    91510

    NLTK相关知识介绍

    Python库,由宾夕法尼亚大学的Steven Bird和Edward Loper在Python的基础上开发的一个模块,至今已有超过十万行的代码。...这是一个开源项目,包含数据集、Python模块、教程等; 怎样安装 详情可以参见我的另一篇博客NLP的开发环境搭建,通过这篇博客,你将学会Python环境的安装以及NLTK模块的下载; 常见模块及用途...搜索文本 单词搜索: 相似词搜索; 相似关键词识别; 词汇分布图; 生成文本; 计数词汇 ? ? #!...可扩展性; 模块化; NLTK中的语料库 古腾堡语料库:gutenberg; 网络聊天语料库:webtext、nps_chat; 布朗语料库:brown; 路透社语料库:reuters; 就职演说语料库...:inaugural; 其他语料库; 文本语料库结构 isolated: 独立型; categorized:分类型; overlapping:重叠型; temporal:暂时型; 基本语料库函数

    63820

    《精通Python自然语言处理》高清pdf 分享

    本书适合熟悉Python语言并对自然语言处理开发有一定了解和兴趣的读者阅读参考。...目录 · · · · · · 第1章字符串操作1 1.1切分1 1.1.1将文本切分为语句2 1.1.2其他语言文本的切分2 1.1.3将句子切分为单词3 1.1.4使用TreebankWordTokenizer...1.3.1使用正则表达式替换单词11 1.3.2用另一个文本替换文本的示例12 1.3.3在执行切分前先执行替换操作12 1.3.4处理重复字符13 1.3.5去除重复字符的示例13 1.3.6用单词的同义词替换...14 1.3.7用单词的同义词替换的示例15 1.4在文本上应用Zipf定律15 1.5相似性度量16 1.5.1使用编辑距离算法执行相似性度量16 1.5.2使用Jaccard系数执行相似性度量18...62 4.1词性标注简介62 默认标注67 4.2创建词性标注语料库68 4.3选择一种机器学习算法70 4.4涉及n—gram的统计建模72 4.5使用词性标注语料库开发分块器78 4.6小结80 第

    2.4K40

    Python主题建模详细教程(附代码示例)

    主题建模是自然语言处理(NLP)和文本挖掘中常用的技术,用于提取给定文本的主题。利用主题建模,我们可以扫描大量的非结构化文本以检测关键词、主题和主题。...我们将为此数据集遵循以下步骤: 1.将每个单词小写 2.用它们的较长形式替换缩略词 3.删除特殊字符和不需要的单词 4.通过使用 nltk.WordPunctTokenizer() 分词器从单词或句子字符串中提取标记...我们将从nltk库中加载英语停用词列表,并从我们的语料库中删除这些单词。 由于我们正在删除停用词,我们可能想检查我们的语料库中最常见的单词,并评估我们是否也想删除其中的一些。...生成文本语料库的词云。...为了找到迪士尼乐园评论数据集的主题,我们使用了潜在狄利克雷分配(LDA),这是一种概率主题建模方法,假设主题可以表示为文本语料库中单词的分布。

    92531

    HanLP《自然语言处理入门》笔记--9.关键词、关键句和短语提取

    信息抽取 信息抽取是一个宽泛的概念,指的是从非结构化文本中提取结构化信息的一类技术。这类技术依然分为基于规则的正则匹配、有监督学习和无监督学习等各种实现方法。我们将使用一些简单实用的无监督学习方法。...由于不需要标注语料库,所以可以利用海量的非结构化文本。 本章按照颗粒度从小到大的顺序,介绍抽取新词、关键词、关键短语和关键句的无监督学习方法。...步骤 2 很容易,关键是步骤 1,如何无监督的提取出文本中的单词。给定一段文本,随机取一个片段,如果这个片段左右的搭配很丰富,并且片段内部成分搭配很固定,则可以认为这是一个词。...虽然我们没有在古典文学语料库上进行训练,但新词识别模块成功的识别出了麝月、高太尉等生僻词语,该模块也适用于微博等社交媒体的不规范文本。...,Out(Vj) 表示从 Vj 出发链接到的节点集合。

    3.3K42

    如何对非结构化文本数据进行特征工程操作?这里有妙招!

    从本质上讲,文本确实有一些句法结构,比如单词组成了短语,短语组成了句子,句子又组合成了段落。...本文中应用的语料库案例 可以看到,我们已经从语料库中提取出几个不同类别的文档。在讨论特征工程之前,一如往常,首先得做数据预处理,删除一些不必要的字符、符号和标记。...这表明了这些相似的文档一定具有一些相似特征。这是分组或聚类的一个很好的案例,可以通过无监督的学习方法来解决,特别是当需要处理数百万文本文档的庞大语料库时。...主题模型 也可以使用一些摘要技术从文本文档中提取主题或者基于概念的特征。主题模型围绕提取关键主题或者概念。每个主题可以表示为文档语料库中的一个词袋或者一组词。...上图中的黑色框表示利用前面提到的参数,从 M 个文档中提取 K 个主题的核心算法。下面的步骤是对算法的解释。 初始化必要的参数。 随机初始化文档,将每个单词分配到 K 个主题中去。

    2.3K60

    NLP中关键字提取方法总结和概述

    这些关键词从文本文档的短语中选择出来的并且表征了文档的主题。在本文中,我总结了最常用的自动提取关键字的方法。 自动从文档中提取关键字的方法是从文本文档中选择最常用和最重要的单词或短语的启发式方法。...YAKE 的优势在于它不依赖于外部语料库、文本文档的长度、语言或领域。与 TF-IDF 相比,它在单个文档的基础上提取关键字,并且不需要庞大的语料库。...4、得分最高的单词选择——单词(顶点)从得分最高的单词到最低得分的单词排序。最后,算法选择单词的前 1/3。...5、关键词提取——在这一步中,如果上一阶段选择的单词一起出现在文本中,则将它们连接为多词关键词。新构建的关键字的分数是单词分数的总和。 该算法对每个文档单独执行,不需要一个文档语料库来进行关键字提取。...总结 在本文中介绍了几种从统计、基于图和嵌入方法中提取关键字的方法。由于该领域非常活跃,我只介绍最常见的方法。我只考虑无监督方法的一个子组(它们不需要训练)。

    2.1K20

    【机器学习】基于LDA主题模型的人脸识别专利分析

    主题模型的统计方法是利用机器学习识别文本数据语料库中的词之间的关系。然后它基于“主题”来描述语料库,主题是模型推断出的属于一个主题的单词组。...然后,我将在我从DergoInnovations索引数据库中提取的一些专利数据实现此方法,我通过Claremont学院图书馆(Claremont Colleges Library)访问了该数据库。...提取数据 为了实现,我对技术专利的摘要进行了建模。我从DergoInnovations索引数据库中提取了这些数据,特别是搜索术语“facial recognition”。...虽然频率当然是衡量一个特定单词在文本语料库中的重要性的一个指标,但我们假设出现在更多文档中的单词就不那么重要了。...虽然我用专利数据演示了一个实现,但同样的方法也可以应用于其他文本数据集,从研究论文摘要到报纸文章或再到推特。

    1K20

    这里有一个提速100倍的方案(附代码)

    “ 如果你曾参与过文本数据分析,正则表达式(Regex)对你来说一定不陌生。词库索引、关键词替换……正则表达式的强大功能使其成为了文本处理的必备工具。...然而, 在处理大文本的情境下,正则表达式的低效率却常常让人抓耳挠腮。今天,文摘菌将为你介绍一款比正则表达式快数百倍的Python库——FlashText。...例如,查询文本中是否出现““Python”这一关键词,或是将所有“python“都替换成”“Python”。如果仅有数百个被搜索和被替换的关键词,正则表达式处理起来会很快。...我们有一个句子,它由三个单词组成——I like Python,并且假设我们有一个四个单词组成的语料库{Python, Java, J2ee, Ruby}。...如果我们从语料库中拿出每个单词,并且检查它是否出现在句子中,这需要我们遍历字符串四次。 如果语料库里有n个词,它将需要n个循环。并且每个搜索步骤(is in sentence?)

    2.5K40

    学习笔记CB001:NLTK库、语料库、词概率、双连词、词典

    词统计,总字数 len(text1),文本所有词集合 set(text1),文本总词数 len(set(text4)),单词出现总次数 text4.count("is") ,统计文章词频从大到小排序到列表...自然语言处理关键点,词意理解、自动生成语言,机器翻译、人机对话(图灵测试,5分钟内回答提出问题的30%)。基于规则,完全从语法句法出发,照语言规则分析、理解。...网络文本语料库,网络和聊天文本,from nltk.corpus import webtext 。...条件分布,在一定条件下事件概率颁上。条件频率分布,指定条件下事件频率分布。...: # coding:utf-8 import sys import importlib importlib.reload(sys) import nltk # 循环10次,从cfdist中取当前单词最大概率的连词

    1.6K100

    使用Python Dash,主题分析和Reddit Praw API自动生成常见问题解答

    这些Reddit帖子显示了一个论坛可能会在几天不活动的情况下带来多大的混乱 在本文中,将更多地了解如何从Reddit等论坛中提取信息更容易,更直观。...实现此目的的一种方法是构建一个仪表板页面,用于从论坛中提取关键主题并将其打包在可过滤的仪表板中以便快速浏览 - 将称之为自动生成的常见问题,因为它通过文本语料库并提取主题以形成创建常见问题(FAQ)/帖子的趋势和模式...Reddit Code获得某个subreddit频道 接下来使用以下元数据将hot_python导出到topics.csv 从Reddit Praw中提取帖子后检索的元数据 主题提取 本节说明如何在...Python中进行近似主题建模 将使用一种称为非负指标因子分解(NMF)的技术,该技术用于从单词包(单词列表)中查找提取主题。...NMF引入了确定性算法,以使用文本语料库创建单个表示。由于这个原因,NMF被表征为ML算法。

    2.3K20

    R语言SVM和LDA文本挖掘分类开源软件存储库标签数据和词云可视化

    从项目背景上就可以看出数据集在特征上的取值是稀疏的,文本信息中会出现大量的单词,而一些常用的单词,如 a ,an , and等是不具有分类特征的词汇,属于常用词汇,因此在文本挖掘的过程中必须剔除这些词汇...对于语料库中的每篇文档,LDA定义了如下生成过程(generative process):对每一篇文档,从主题分布中抽取一个主题;从上述被抽到的主题所对应的单词分布中抽取一个单词;重复上述过程直至遍历文档中的每一个单词...对于一篇文档d中的每一个单词,我们从该文档所对应的多项分布θ中抽取一个主题z,然后我们再从主题z所对应的多项分布ϕ中抽取一个单词w。将这个过程重复Nd次,就产生了文档d,这里的Nd是文档d的单词总数。...同时从算法本身来看就存在着一定的缺陷, 因为经典的SVM分类算法要求分类属性是二元变量,而对于多元变量来说,必须组合多个SVM模型,从而可能是算法的准确度下降,对本项目的数据来说,每一个样本可能属于多个类别...----最受欢迎的见解1.Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组2.R语言文本挖掘、情感分析和可视化哈利波特小说文本数据3.r语言文本挖掘tf-idf主题建模,情感分析

    67020

    《BERT基础教程:Transformer大模型实战》读书笔记

    两类文本摘要(text summarization)任务:提取式摘要任务:提取给定文本中重要的句子形成摘要抽象式摘要任务:转述给定文本形成摘要未登录词(out-of-vocabulary word, OOV...BERT模型在以下两个自然语言处理任务上进行预训练:掩码语言模型构建下句预测语言模型构建任务是指通过训练模型来预测一连串单词的下一个单词。...,则该子词对应的单词也将被掩盖。...,而是使用字节级序列WordPiece:在字节对编码中,首先要从给定的数据集中提取带有计数的单词。...法语语料库由24个子语料库组成,包含来自不同来源的数据,如维基百科、书籍、内部抓取、WMT19数据、OPUS的法语文本以及维基媒体等。

    26810

    资源 | Chinese Word Vectors:目前最全的中文预训练词向量集合

    在这里,你可以轻松获得具有不同属性的预训练向量,并将它们用于各类下游任务。 此外,开发者还在该工具中提供了一个中文类比推理数据集 CA8 及其评估工具包,用户可以以此评估自己词向量的质量。...格式 本资源中的预训练词向量文件以文本格式存储。每一行包含一个单词及其词向量。每个值由空格分开。第一行记录元信息:第一个数字表示该单词在文件中的排序,第二个数字表示维度大小。...为此,开发者考虑使用词-词和词-字符的共现统计来学习词向量。字符级的 n-gram 的长度范围是从 1 到 4(个字符特征)。...语料库 开发者做了大量工作来收集多个领域的语料库。所有的文本数据都通过删除 html 和 xml 标记进行了预处理。只有纯文本被保留并使用 HanLP(v_1.5.3) 进行词分割。...语料库的详细信息如下: ? 所有的单词都被包含其中,包括低频词。 工具包 所有的词向量由 ngram2vec 工具包训练。

    2.2K30

    用Python从头开始构建一个简单的聊天机器人(使用NLTK)

    测试安装:运行python然后键入import nltk 安装NLTK软件包 导入NLTK并运行nltk.download().这将打开NLTK下载器,你可以从其中选择要下载的语料库和模型,你也可以一次下载所有软件包...用NLTK对文本进行预处理 文本数据的主要问题是它都是文本格式(字符串)。然而,机器学习算法需要一定的数值特征向量来完成任务。...TF-IDF权重是信息检索和文本挖掘中常用的权重。此权重是一种统计度量,用于评估单词对集合或语料库中的文档的重要程度。 例子: 假设一份包含100个单词的文档,其中“电话”这个词出现了5次。...standard python strings 语料库 对于我们的例子,我们将使用Wikipedia页面聊天机器人作为我们的主体。...import cosine_similarity 这将用于查找用户输入的单词与语料库中的单词之间的相似性。

    3.9K10

    资源 | Chinese Word Vectors:目前最全的中文预训练词向量集合

    在这里,你可以轻松获得具有不同属性的预训练向量,并将它们用于各类下游任务。 此外,开发者还在该工具中提供了一个中文类比推理数据集 CA8 及其评估工具包,用户可以以此评估自己词向量的质量。...格式 本资源中的预训练词向量文件以文本格式存储。每一行包含一个单词及其词向量。每个值由空格分开。第一行记录元信息:第一个数字表示该单词在文件中的排序,第二个数字表示维度大小。...为此,开发者考虑使用词-词和词-字符的共现统计来学习词向量。字符级的 n-gram 的长度范围是从 1 到 4(个字符特征)。...语料库 开发者做了大量工作来收集多个领域的语料库。所有的文本数据都通过删除 html 和 xml 标记进行了预处理。只有纯文本被保留并使用 HanLP(v_1.5.3) 进行词分割。...语料库的详细信息如下: ? 所有的单词都被包含其中,包括低频词。 工具包 所有的词向量由 ngram2vec 工具包训练。

    80160

    不可不知 | 有关文本挖掘的14个概念

    文本挖掘(在文本数据库也称文本数据挖掘或者知识发现)是从大量无结构的数据中提炼出模式(也就是有用的信息和知识)的半自动化处理过程。...在大量数据产生的领域,文本挖掘的益处尤为突出。 ·信息提取。通过模式匹配寻找出文本中先定的物件和序列,文本挖掘能够鉴别文本中主要的短语和关系。最常见的信息提取形式大概就是“实体抽取”。...在语言学中,语料库是一个大型的结构化文本的集合(现在一般是以电子形式储存和处理),用作知识发现的工具。 ·术语。术语是由在一个特定域的语料库中,通过自然语言处理提取的单词或者多词短语。 ·概念。...停用词(也称为“干扰词”),是在自然语言处理之前或者之后被过滤掉的单词。...术语词典是一个小而专的领域里的术语集合,可以控制从语料库中提取的字词。 ·词频。词频就是一个单词在某文本中出现的次数。 ·词性标注。

    94280
    领券