首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从曲线卫星数据集中提取区域

是指从曲线卫星所采集的数据集中,通过特定的算法和技术,提取出感兴趣的区域或者特定的信息。

曲线卫星是一种通过轨道运行的卫星,它可以采集地球表面的图像数据。这些数据可以包含地理信息、气象信息、环境信息等。在云计算领域,从曲线卫星数据集中提取区域是一项重要的任务,它可以帮助我们获取特定区域的地理信息,进行地质勘探、环境监测、气象预测等应用。

在提取区域的过程中,可以使用图像处理和计算机视觉的技术。首先,需要对曲线卫星数据进行预处理,包括去噪、增强、校正等操作,以提高数据的质量。然后,可以使用图像分割算法,将图像分割成不同的区域。常用的图像分割算法包括基于阈值的方法、基于边缘的方法、基于区域的方法等。接下来,可以使用特征提取算法,提取每个区域的特征,如颜色、纹理、形状等。最后,可以使用分类算法,将提取的特征与已知的地理信息进行匹配,从而确定每个区域的类别。

在云计算领域,腾讯云提供了一系列与曲线卫星数据处理相关的产品和服务。例如,腾讯云的图像处理服务可以用于曲线卫星数据的预处理和图像分割。腾讯云的人工智能服务可以用于特征提取和分类。此外,腾讯云还提供了存储服务和计算服务,以支持曲线卫星数据的存储和处理。

总结起来,从曲线卫星数据集中提取区域是一项复杂的任务,涉及到图像处理、计算机视觉、人工智能等多个领域的知识和技术。腾讯云提供了一系列相关的产品和服务,可以帮助用户实现这一任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

A Comparison of Super-Resolution and Nearest Neighbors Interpolation

随着机器视觉和深度卷积神经网络(CNNs)被应用于新的问题和数据,网络架构的进步和这些网络的应用都得到了快速的发展。然而,在大多数分类和目标检测应用中,图像数据是这样的,感兴趣的对象相对于场景来说是很大的。这可以在最流行的公共基准数据集ImageNet、VOC、COCO和CIFAR中观察到。这些数据集和它们对应的挑战赛继续推进网络架构比如SqueezeNets, Squeeze-and-Excitation Networks, 和 Faster R-CNN。对于DigitalGlobe的WorldView-3卫星将每个像素表示为30平方厘米的区域的卫星数据。在这些场景中,在大于3000x3000的场景中像汽车这样的物体通常是13x7像素或更小。这些大型场景需要预处理,以便在现代目标检测网络中使用,包括将原始场景切割成更小的组件用于训练和验证。除此之外,在停车场和繁忙的道路等区域,车辆等物体往往位于较近的位置,这使得车辆之间的边界在卫星图像中难以感知。缺乏公共可用的标记数据也阻碍了对这个应用程序空间的探索,只有xView Challenge数据集拥有卫星捕获的带有标记对象的图像。等空中数据集分类细粒度特性在空中图像(COFGA),大规模数据集在空中图像(队伍),对象检测和汽车开销与上下文(COWC)也有类似的对象类,但存在一个较低的地面样本距离(德牧)使他们更容易获得良好的对象检测结果,但限制了实际应用。考虑到将CNNs应用于卫星数据所面临的挑战,将升级作为预处理步骤对实现准确探测目标的良好性能至关重要。深度学习的进步导致了许多先进的体系结构可以执行升级,在低分辨率图像上训练网络,并与高分辨率副本进行对比验证。尽管关于这一主题的文献越来越多,但超分辨率(SR)在目标检测和分类问题上的应用在很大程度上还没有得到探索,SR与最近邻(NN)插值等也没有文献记载。SR网络作为卫星图像中目标检测的预处理步骤,具有良好的应用前景,但由于其深度网络包含数百万个必须正确训练的参数,因此增加了大量的计算成本。与SR不同的是,NN仍然是最基本的向上缩放方法之一,它通过取相邻像素并假设其值来执行插值,从而创建分段阶跃函数逼近,且计算成本很小。

03
  • Semi-supervised learning-based satellite remote sensing object detection method for power transmissi

    众所周知,随着电网的日益复杂,传统的输电塔人工测量方法已经失效,无法满足安全稳定运行的要求。尽管卫星遥感技术的发展为输电塔的高效稳定测量提供了新的前景,但仍有许多问题需要解决。由于恶劣的气候和成像设备的限制,遥感图像中的一些输电塔目标是模糊的,这使得生成数据集和实现高精度输电塔目标检测变得极其困难。为了进一步提高发射塔的检测精度,首次将基于暗通道先验的图像增强算法应用于遥感图像,提高了图像的可解释性。然后,考虑到增强图像中仍有一些传输塔无法手动标记,采用了一种基于伪标记的半监督学习方法来最大限度地利用现有数据。基于这一高质量的数据集,利用移动倒瓶颈卷积和可变形卷积构建了一个传输塔卫星遥感目标检测模型。最后,根据我国某地区的卫星遥感图像数据集进行了烧蚀和对比实验。实验结果表明,图像增强和半监督学习方法都能提高检测精度,与现有主流模型相比,该方法性能更好。

    01

    SEMI-SUPERVISED OBJECT DETECTION IN REMOTE SENSING IMAGES USING GENERATIVE ADVERSARIAL NETWORKS

    目标检测是计算机视觉中一项具有挑战性的任务。现在,许多检测网络在应用大型训练数据集时可以获得良好的检测结果。然而,为训练注释足够数量的数据往往很费时间。为了解决这个问题,本文提出了一种基于半监督学习的方法。 半监督学习用少量的注释数据和大量的未注释数据来训练检测网络。 在提出的方法中,生成对抗网络被用来从未注释的数据中提取数据分布。提取的信息随后被用于提高检测网络的性能。实验表明,与只使用少数注释数据的监督学习相比,本文的方法大大改善了检测性能。实验结果证明,当训练数据集中只有少数目标物体被注释时,有可能取得可接受的检测结果。

    02

    论文翻译 | 多鱼眼相机的全景SLAM

    提出了一种基于特征的全景图像序列同时定位和建图系统,该系统是在宽基线移动建图系统中从多鱼眼相机平台获得的.首先,所开发的鱼眼镜头校准方法结合了等距投影模型和三角多项式,以实现从鱼眼镜头到等效理想帧相机的高精度校准,这保证了从鱼眼镜头图像到相应全景图像的精确转换.其次我们开发了全景相机模型、具有特定反向传播误差函数的相应束调整以及线性姿态初始化算法.第三,实现的基于特征的SLAM由初始化、特征匹配、帧跟踪和闭环等几个特定的策略和算法组成,以克服跟踪宽基线全景图像序列的困难.我们在超过15公里轨迹的大规模彩信数据集和14000幅全景图像以及小规模公共视频数据集上进行了实验.

    02

    基于深度学习的高分辨率遥感图像目标检测技术目前的研究现状

    高分辨率遥感目标检测目前的研究成果主要分为两类,特定目标检测和一般目标检测。特定目标检测主要包括城市[1]、机场[2]、建筑[3]、飞机[4]、舰船[5]-[6]、车辆[7]-[8]、云[9]、海冰[10]等遥感图像中比较重要和有价值的目标。一般目标检测研究的问题主要是目标检测中面临的难题,主要面临的问题主要有:类不平衡[11]、复杂背景[12]、目标的尺度变化[13]、特殊视角[14]-[16]、小目标[17]-[18]等问题。下面分别的一般目标检测和特定目标检测进行介绍(特定目标检测当然还包含其他许多类,这里我们不能一一列出。不少文献还提出了数据集,这里我们只介绍方法。

    06

    ORSIm:A Novel Object Detection Framework in Optical Remote Sensing Imagery Using Spatial-Feature

    近年来,随着星载成像技术的飞速发展,光学遥感图像中的目标检测受到了广泛的关注。虽然许多先进的研究工作都使用了强大的学习算法,但不完全特征表示仍然不能有效地、高效地处理图像变形,尤其是目标缩放和旋转。为此,我们提出了一种新的目标检测框架,称为光学遥感图像检测器(ORSIm检测器),它集成了多种通道特征提取、特征学习、快速图像金字塔匹配和增强策略。ORSIm检测器采用了一种新颖的空频信道特征(SFCF),它综合考虑了频域内构造的旋转不变信道特征和原始的空间信道特征(如颜色信道和梯度幅度)。随后,我们使用基于学习的策略对SFCF进行了改进,以获得高级或语义上有意义的特性。在测试阶段,通过对图像域中尺度因子的数学估计,实现了快速粗略的通道计算。对两种不同的机载数据集进行了大量的实验结果表明,与以往的先进方法相比,该方法具有优越性和有效性。

    01

    基于大地遥感卫星和哨兵图像的 30 米分辨率中国玉米分布图

    作为全球第二大玉米生产国,中国的玉米产量占全球总产量的 23%,在保证玉米市场稳定方面发挥着重要作用。尽管其重要性不言而喻,但目前还没有全中国 30 米空间分辨率的玉米分布图。本研究采用时间加权动态时间扭曲法,通过比较每个像素点的卫星植被指数时间序列与已知玉米田得出的标准时间序列的相似性来识别玉米种植区,绘制了占中国玉米种植面积 99% 以上的 22 个省份 2016 年至 2020 年的玉米分布图。基于 18800 个 30 米空间分辨率的田间调查像素,该分布图在整个调查省份的生产者和用户平均精确度分别为 76.15%和 81.59%。市级和县级普查数据在再现玉米空间分布方面也表现良好。这项研究提供了一种基于少量实地调查数据绘制大面积玉米地图的方法。

    00

    首创!BEV-CV:用鸟瞰视角变换实现跨视角地理定位

    因为航拍视角和地面视角之间有很大的差异,所以跨视角地理定位一直是一个难题。本文提出了一种新方法,可以利用地理参考图像进行定位,而不需要外部设备或昂贵的设备。现有的研究使用各种技术来缩小域间的差距,例如对航拍图像进行极坐标变换或在不同视角之间进行合成。然而,这些方法通常需要360°的视野,限制了它们的实际应用。我们提出了BEV-CV,这是一种具有两个关键创新的方法。首先,我们将地面级图像转换为语义鸟瞰图,然后匹配嵌入,使其可以直接与航拍分割表示进行比较。其次,我们在该领域首次引入了标准化温度缩放的交叉熵损失,实现了比标准三元组损失更快的收敛。BEV-CV在两个公开数据集上实现了最先进的召回精度,70°裁剪的特征提取Top-1率提高了300%以上,Top-1%率提高了约150%,对于方向感知应用,我们实现了70°裁剪的Top-1精度提高了35%。

    01

    文生图文字模糊怎么办 | AnyText解决文生图中文字模糊问题,完成视觉文本生成和编辑

    前者使用文本的字符、位置和掩码图像等输入来为文本生成或编辑生成潜在特征。后者采用OCR模型将笔划数据编码为嵌入,与来自分词器的图像描述嵌入相结合,以生成与背景无缝融合的文本。作者在训练中采用了文本控制扩散损失和文本感知损失,以进一步提高写作准确性。据作者所知,AnyText是第一个解决多语言视觉文本生成的工作。 值得一提的是,AnyText可以与社区现有的扩散模型相结合,用于准确地渲染或编辑文本。经过广泛的评估实验,作者的方法在明显程度上优于其他所有方法。 此外,作者还贡献了第一个大规模的多语言文本图像数据集AnyWord-3M,该数据集包含300万个图像-文本对,并带有多种语言的OCR注释。基于AnyWord-3M数据集,作者提出了AnyText-benchmark,用于评估视觉文本生成准确性和质量。 代码:https://github.com/tyxsspa/AnyText

    06

    基于深度学习的遥感图像地物变化检测综述

    遥感(Remote Sensing,缩写为RS)是指非接触式、远距离的探测技术。遥感技术通常使用航空航天平台、按照特定的波段对地球或其他天体进行成像观测,通过分析观测数据,探测地球或其他天体资源与环境。遥感技术在现代化社会中十分重要,它能够在一定程度上体现一个国家的经济实力和科技水平,故一直受到世界大国的高度重视。自从美国的陆地卫星Landat-1和法国的SPOT-1卫星相继升空,世界进入了高分辨率遥感技术发展和应用的新时代。2001年,美国发射的QuickBird卫星可采集分辨率为0.61m/像素的全彩色图像和2.44m/像素的多光谱图像,标志着世界进入“亚米级”高空间分辨率[2]遥感时代。在20世纪80年代后,我国遥感技术也进入飞速发展时期。风云气象卫星和资源系列卫星的成功发射为我国卫星遥感事业的发展奠定了坚实的基础。2006年到2016年间,我国陆续将遥感卫星一号到遥感卫星三十号共30个卫星送入太空,这些卫星在我国国土资源普及、防灾减灾等领域发挥了重要的作用。2013年到2018年间,我国相继将高分一号到高分六号等高分辨率卫星送入太空,其在国土统计、城市规划、路网设计、农作物估计和抗灾救援等领域取得了突出的成就。

    02
    领券