首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Keras区分狗和猫

https://www.kaggle.com/c/dogs-vs-cats/data 原外文教程:https://deeplizard.com/learn/video/bfQBPNDy5EM 在本次比赛中,.../cnn/valid' test_path = 'dogs-vs-cats/cnn/test' # 2、使用VGG16预处理图像并创建图像生成器 # flow_from_directory()创建一个...DirectoryIterator,它从相应的数据目录生成一批标准化的张量图像数据 # 其中: # target_size参数为图像大小,这会将所有图像调整为指定的大小。...=test_path, target_size=(224, 224), classes=['cat', 'dog'], batch_size=10, shuffle=False) # 测试,从训练集中生成一批图像和标签...,以及来自模型的测试集的预测标签传递给了混淆矩阵 # 可以通过调用test_batches.classes来访问测试集未打乱的真实标签 # 使用np.argmax(predictions, axis=-

96510

【Keras图像处理入门:图像加载与预处理全解析】

目录批量加载实战 使用flow_from_directory方法,可以通过指定目录中的子目录来加载图像数据。每个子目录代表一个类别,子目录中的文件(图像)会自动被分配到该类别。...DataFrame数据加载 flow_from_dataframe 方法用于从 pandas DataFrame 中加载图像数据。它适用于图像文件路径和标签信息存储在一个 CSV 文件中的情况。...DataFrame 中包含了图像的文件名和对应的标签,图像数据的路径可以通过文件夹路径与文件名结合得到。 适用场景: 适用于图像路径和标签信息存储在 CSV 文件中的情况。...train_datagen.flow_from_dataframe() 方法通过x_col='filename'和 y_col='class' 指定了从 CSV 文件中读取文件名和标签。...两种打开方式对比 特性 flow_from_directory flow_from_dataframe 数据格式 按文件夹组织,每个文件夹为一个类别 通过 CSV 文件指定图像路径和标签 适用场景 图像按类别存放在不同文件夹中

11810
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    用AI训练AI:制作一个简单的猫狗识别模型

    ,所以不需要额外的步骤来从文件名中提取类别信息。...模块的一部分,用于实时地生成批量图像数据# 这个类通过在训练过程中对图像进行实时的数据增强来提高模型的泛化能力。...validation_split=0.2) # rescale=1./255 表示将图像像素值从[0,255]缩放到[0,1]区间,这有助于模型学习,validation_split=0.2 表示从训练数据中划分...20% 作为验证集# flow_from_directory 是 ImageDataGenerator 类的一个方法,它用于从文件夹路径中直接加载图像,并将它们作为深度学习模型的输入# 这个方法非常适合处理文件夹中按类别组织的图像数据...,它按照文件夹的结构自动为图像分配标签train_generator = train_datagen.flow_from_directory( train_dir, # 从目录加载图像数据

    1.3K62

    使用卷积神经网络构建图像分类模型检测肺炎

    在本篇文章中,我将概述如何使用卷积神经网络构建可靠的图像分类模型,以便从胸部x光图像中检测肺炎的存在。 ? 肺炎是一种常见的感染,它使肺部的气囊发炎,引起呼吸困难和发烧等症状。...,我们的数据集中有5639个文件,我们使用这些图像中的15%作为验证集,另外15%作为测试集。...生成器与flow_from_directory结合使用,以指定的格式从目录中调用图像,然后创建重新标定的数据。 构建模型体系结构 keras.models.Sequential()启动一个序列模型。...因此,在本例中,我们256 * 256 * 1的图像(1指通道的数量,RGB图像有3个通道,而灰度图像有1个通道)中的每一个连续的3 * 3个像素组将通过32个过滤器生成32个特征图,大小为256 *...# create a test generator to apply rescaling test_g = image.ImageDataGenerator(rescale = 1/255).flow_from_directory

    1.1K30

    ImageDataGenerator

    改变图像内容的位置; 尺度变换(scale): 对图像按照指定的尺度因子, 进行放大或缩小; 或者参照SIFT特征提取思想, 利用指定的尺度因子对图像滤波构造尺度空间....二、ImageDataGenerator类的一些方法以及处理流程 2.1 ImageDataGenerator的一些方法概览 def init(self, def flow(self, x, def flow_from_directory...如未提供,类比列表将自动从 y_col 中推理出来,y_col 将会被映射为类别索引)。 包含从类名到类索引的映射的字典可以通过属性 class_indices 获得。...决定返回标签数组的类型: "categorical" 将是 2D one-hot 编码标签, "binary" 将是 1D 二进制标签, "sparse" 将是 1D 整数标签, "input" 将是与输入图像相同的图像...如果未提供,类的列表将自动从 directory 下的 子目录名称/结构 中推断出来,其中每个子目录都将被作为不同的类(类名将按字典序映射到标签的索引)。

    1.7K20

    TensorFlow 基础学习 - 4 (重点是调参)

    稍后,我们使用一个叫做ImageGenerator的类--用它从子目录中读取图像,并根据子目录的名称自动给图像贴上标签。所以,会有一个"训练"目录,其中包含一个"马匹"目录和一个"人类"目录。...),它将读取源文件夹中的图片,将它们转换为float32多维数组,并将图像数据(连同它们的标签)反馈给神经元网络。...总共需要两个生成器,有用于产生训练图像,一个用于产生验证图像。生成器将产生一批大小为300x300的图像及其标签(0或1)。...在这个例子中,我们将通过将像素值归一化到[0, 1]范围内(最初所有的值都在[0, 255]范围内)来对图像进行预处理。...通过ImageDataGenerator类的.flow(data, labels)或.flow_from_directory(directory),可以创建生成器。

    73620

    蔬菜识别系统Python+TensorFlow+Django网页界面+卷积网络算法+深度学习模型

    TensorFlow基于数据流图的概念,使用图来表示计算过程中的数据流动。它的核心是张量(Tensor),是多维数组的抽象,可以在计算图中流动。在进行图像识别分类之前,我们需要准备训练数据。...通常情况下,我们需要一个包含训练图像和对应标签的数据集。TensorFlow提供了一些便捷的工具来加载和处理图像数据。...我们使用ImageDataGenerator来定义图像的预处理参数,并通过flow_from_directory方法从目录中加载数据集。...在TensorFlow中,我们可以使用Keras API来构建图像识别分类模型。Keras提供了一系列方便易用的层和模型,可以帮助我们快速构建深度学习模型。...本文介绍了TensorFlow在图像识别分类中的应用,并通过相关代码进行了讲解。通过TensorFlow提供的工具和库,我们可以方便地构建、训练和评估图像识别分类模型。

    48821

    keras系列︱图像多分类训练与利用bottleneck features进行微调(三)

    x_train格式例如(100,100,100,3),100张格式为100*100*3的图像集;y_train格式为(100,) . 2、多分类标签指定keras格式 keras对多分类的标签需要一种固定格式...二、官方改编——多分类简易网络结构(Sequential式) 改编自官方文档的《面向小数据集构建图像分类模型》 . 1、数据来源与下载 官方文档是猫狗二分类,此时变成一个5分类,由于追求效率,从网上找来一个很小的数据集.... 4、图像预处理 然后我们开始准备数据,使用.flow_from_directory()来从我们的jpgs图片中直接产生数据和标签。...flow_from_directory(directory): 以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据 train_datagen = ImageDataGenerator...,因为此时是按照顺序产生;而在train_generator数据训练之前的数据准备,则需要设置标签 shuffle,此时为预测场景,制作数据集,不用打乱;但是在model.fit过程中需要打乱,表示是否在训练过程中每个

    4.4K80

    如何使用机器学习来检测手机上的聊天屏幕截图

    在保留重要图像安全的同时查找和删除这些屏幕快照是一项非常耗时的任务。因此想用机器学习来完成这项工作 理念 从普通图像中检测聊天屏幕截图的任务可以表述为经典的二进制图像分类问题!...CNN的输入层将是一幅图像,输出层将仅包含一个神经元,告诉输入图像是正常图像还是聊天屏幕截图。在接下来的部分中,将介绍构建模型的所有细节。 数据采集 在机器学习中,一切都始于数据。...第一个表示聊天屏幕截图,另一个表示普通图像。因此从不同的消息传递应用程序(如WhatsApp,Messenger,Instagram等)中收集了与朋友聊天的屏幕截图。...从手机和互联网上收集了一些人,地点,风景的随机图像。总共拍摄了660张图像。请注意对于许多更棘手的问题,这不是足够的数据量。 训练测试拆分 将80%的数据用于训练,其余的用于测试。...首先创建一个ImageDataGenerator对象。在这个对象的帮助下,使用了缩放,剪切,翻转转换来增强数据。为了规范化像素值,应将图像重新缩放为1 / 255.0倍。

    2.1K10

    数据预处理-对图片扩展的处理方法

    Keras非常便捷的提供了图片预处理的类--ImageDataGenerator 可以用这个图片生成器生成一个batch周期内的数据,它支持实时的数据扩展,训练的时候会无限生成数据,一直到达设定的epoch...flow(): 接收numpy数组和标签为参数,生成经过数据扩展或标准化后的batch数据,并在一个无限循环中不断的返回数据 flow_from_directory() :以文件夹路径为参数,生成经过数据提升.../归一化后的数据,在一个无限循环中无限产生数据 图片数据扩展举例: 在数据集不够多的情况下,可以使用ImageDataGenerator()来扩大数据集防止搭建的网络出现过拟合现象。...实时生成数据集用于训练 经常会和函数式模型Model()的API---.fit_generator()配合使用,在训练中实时地生成数据。...break the loop by hand because # the generator loops indefinitely break 2)和.flow_from_directory

    1.2K40

    《高效迁移学习:Keras与EfficientNet花卉分类项目全解析》

    从零到精通的迁移学习实战指南:以Keras和EfficientNet为例 一、为什么我们需要迁移学习? 1.1 人类的学习智慧 想象一下:如果一个已经会弹钢琴的人学习吉他,会比完全不懂音乐的人快得多。...因为TA已经掌握了乐理知识、节奏感和手指灵活性,这些都可以迁移到新乐器的学习中。这正是迁移学习(Transfer Learning)的核心思想——将已掌握的知识迁移到新任务中。...在迁移学习中,我们可以利用已有的模型参数,减少训练时间并提高模型的性能。...2.2 方法论全景图 方法类型 数据量要求 训练策略 适用场景 特征提取 少量 冻结全部预训练层 快速原型开发 部分微调 中等 解冻部分高层 领域适配 端到端微调 大量 解冻全部层,调整学习率 专业领域应用...(rescale=1./255).flow_from_directory( base_dir, target_size=(224, 224), batch_size=32

    2000

    Keras图像数据预处理范例——Cifar2图片分类

    我们将重点介绍Keras中可以对图片进行数据增强的ImageDataGenerator工具和对内存友好的训练方法fit_generator的使用。让我们出发吧!...2,数据增强 利用keras中的图片数据预处理工具ImageDataGenerator我们可以轻松地对训练集图片数据设置旋转,翻转,缩放等数据增强。...(rescale=1./) 数据增强相关参数说明: rotation_range是角度值(在 0~180 范围内),表示图像随机旋转的角度范围。...zoom_range是图像随机缩放的范围。 horizontal_flip 是随机将一半图像水平翻转。如果没有水平不对称的假设(比如真 实世界的图像),这种做法是有意义的。...3,导入数据 使用ImageDataGenerator的flow_from_directory方法可以从文件夹中导入图片数据,转换成固定尺寸的张量,这个方法将得到一个可以读取图片数据的生成器generator

    1.2K10

    轻松使用TensorFlow进行数据增强

    在TensorFlow中,使用ImageDataGenerator类完成数据扩充。...如果您正在使用TensorFlow,则可能已经使用了ImageDataGenerator简单的方法来缩放现有图像,而没有进行任何其他扩充。可能看起来像这样: ?...ImageDataGenerator执行增强的更新可能如下所示: ? 这是什么意思呢?...;上例中为0.2 horizontal_flip-用于水平随机翻转图像的布尔值;在上面的例子中为真 vertical_flip-布尔值,用于垂直随机翻转图像;在上面的例子中为真 fill_mode-根据...“常数”,“最近”,“反射”或“环绕”填充输入边界之外的点;在以上示例中最接近 然后,您可以使用该ImageDataGenerator flow_from_directory选项指定训练数据的位置(以及选择是否进行验证

    86720

    太强了,竟然可以根据指纹图像预测性别!

    众所周知,没有两个人具有相同的指纹,但是我们可以建立一个CNN模型来从指纹图像中预测性别吗?让我们看看…… ? 在本文中,我们将创建一个可以根据指纹预测性别的卷积神经网络(CNN)模型。...实现步骤 • 了解数据集 • 重新构造数据集(以便使用keras 的Flow_from_directory函数) • 定义一个简单的函数提取所需的特定标签 • 定义一个简单的函数读取图像、调整图像大小。...如果我们的数据集如上图所示那样构造,我们可以使用keras中的flow_from_directory()函数来加载数据集,这是从目录加载数据的一种非常简单的方法,它以目录名称作为类别。...第一步:从图像标签中提取性别。...• 标签也从列表转换为分类值,我们有两个类F和M类,分配给train_labels 让我们看看处理后的训练图像train_data和训练图像标签train_labels最后的样子 ? ?

    72930

    Deep learning with Python 学习笔记(3)

    然后将这些特征输入一个新的分类器,从头开始训练 ,简言之就是用提取的特征取代原始输入图像来直接训练分类器 图像分类的卷积神经网络包含两部分:首先是一系列池化层和卷积层,最后是一个密集连接分类器。...模型中更靠近底部的层提取的是局部的、高度通用的特征图(比如视觉边缘、颜色和纹理),而更靠近顶部的层提取的是更加抽象的概念(比如“猫耳朵”或“狗眼睛”)。...所以如果你的新数据集与原始模型训练的数据集有很大差异,那么最好只使用模型的前几层来做特征提取,而不是使用整个卷积基 可以从 keras.applications 模块中导入一些内置的模型如 Xception...但出于同样的原因,这种方法的计算代价比第一种要高很多 以下将使用在 ImageNet 上训练的 VGG16 网络的卷积基从猫狗图像中提取有趣的特征,然后在这些特征上训练一个猫狗分类器 第一种方法,保存你的数据在...(rescale=1./255) batch_size = 20 # 图像及其标签提取为 Numpy 数组 def extract_features(directory, sample_count):

    60620

    keras提供的网络_kubernetes网络

    InceptionV3,在InceptionV3中google将分解的思想用到了极致,把二维卷积核(NxN)拆成两个方向上的一维卷积核(Nx1,1xN)。...Pascal_VOC数据集 Pascal VOC为图像识别,检测与分割提供了一整套标准化的优秀的数据集,每一年都会举办一次图像识别竞赛。下面是VOC2012,训练集(包括验证集)的下载地址。...里面的flow_from_directory方法可以从相应的目录里面批量获取图片,这样就可以不用一次性读取所有图片(防止内存不足)。...(在这里加上一点个人理解,当提取的特征比较简单,比如边缘,轮廓的时候,往往只需要提取某个像素附近的几个像素就行了,这时卷积核比较小,没有问题。...但是当提取的特征变得复杂的时候,比如提取的是人的鼻子,耳朵的时候,需要的可能就是某个像素旁边几十或者几百个像素了。当然我说的这些像素指的是特征图里面的像素。)

    57820

    Keras Xception Multi loss 细粒度图像分类

    js.baidu.com/ 框架 Keras Tensorflow后端 硬件 Geforce GTX 1060 6G Intel® Core™ i7-6700 CPU Memory 8G 模型 Xception提取深度特征...Keras实现 去掉Xception最后用于imagenet分类的全连接层,获取图像深度特征 输入两张图片,可能属于相同类也可能属于不同类 根据特征和标签进行多分类训练 同时以两图是否属于同一类作为二分类标签训练...数据预处理 从Baidu云下载数据 训练集: http://pan.baidu.com/s/1slLOqBz Key: 5axb 测试集: http://pan.baidu.com/s/1gfaf9rt...训练 使用Keras的ImageDataGenerator接口进行数据增广 同时使用ImageDataGenerator做数据增广并进行正负样本对采样是一个难点.因为从ImageDataGenerator...遍历数据集找同类样本作为正样本效率很低,幸运的是,在每个batch中,存在同类的样本,所以我们可以通过在同一个batch中交换同类样本的位置,构造出包含正样本对的另一个输入.

    1.3K00

    【Keras速成】Keras图像分类从模型自定义到测试

    这一次我们讲讲keras这个简单、流行的深度学习框架,一个图像分类任务从训练到测试出结果的全流程。...其实就是事先把数据进行解析,然后保存到.pkl 或者.h5等文件中,然后在训练模型的时候直接导入,输入到网络中;另一种是直接从本地读取文件,解析成网络需要的格式,输入网络进行训练。...此处采用keras的processing模块里的ImageDataGenerator类定义一个图像分类任务的dataset生成器: train_data_dir = '../../../.....Keras的processing模块中提供了一个能够实时进行数据增强的图像生成类ImagGenerator,该类下面有一个函数flow_from_directory,顾名思义该函数就是从文件夹中获取图像数据...Keras是高度封装的,在模型训练过程中,看不到网络的预测结果和网络的反向传播过程,只需定义好损失函数,事实上,网络定义中的模型输出会包含网络的输入和输出。

    1.1K10
    领券