首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas数据处理2、DataFrame的drop函数具体参数使用详情

Pandas数据处理2、DataFrame的drop函数具体参数使用详情 ---- 目录 Pandas数据处理2、DataFrame的drop函数具体参数使用详情 前言 环境 基础函数的使用 drop...,但是她很明显不是一个真正意义存在的图片,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字...,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了...index:index是按照行删除时传入的参数,需要传入的是一个列表,包含待删除行的索引编号。 columns:columns是按照列删除时的参数,同样传入的是一个列表,包含需要删除列的名称。...: drop函数index参数测试 删除行,这里index=[0,1,2]删除前三行 import pandas as pd import numpy as np df = pd.DataFrame

1.4K30

python数据科学系列:pandas入门详细教程

,仅支持一维和二维数据,但数据内部可以是异构数据,仅要求同列数据类型一致即可 numpy的数据结构仅支持数字索引,而pandas数据结构则同时支持数字索引和标签索引 从功能定位上看: numpy虽然也支持字符串等其他数据类型...正因如此,可以从两个角度理解series和dataframe: series和dataframe分别是一维和二维数组,因为是数组,所以numpy中关于数组的用法基本可以直接应用到这两个数据结构,包括数据创建...切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...get,由于series和dataframe均可以看做是类字典结构,所以也可使用字典中的get()方法,主要适用于不确定数据结构中是否包含该标签时,与字典的get方法完全一致 ?...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas

15K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python开发之Pandas的使用

    一、简介 Pandas 是 Python 中的数据操纵和分析软件包,它是基于Numpy去开发的,所以Pandas的数据处理速度也很快,而且Numpy中的有些函数在Pandas中也能使用,方法也类似。...Pandas 为 Python 带来了两个新的数据结构,即 Pandas Series(可类比于表格中的某一列)和 Pandas DataFrame(可类比于表格)。...Series中的元素 1、访问 一种类似于从列表中按照索引访问数据,一种类似于从字典中按照key来访问value。...的使用 1、创建DataFrame pd.DataFrame(data, index, columns) python data是数据,可以输入ndarray,或者是字典(字典中可以包含Series...= 1) #缺失值的处理 df.fillna(mean_value)#替换缺失值 df.dropna()#删除包含缺失值的行 df.dropna(axis = 1, how = 'all')#只删除所有数据缺失的列

    2.9K10

    Pandas数据处理——渐进式学习1、Pandas入门基础

    ]数组切片 用标签提取一行数据 用标签选择多列数据 用标签切片,包含行与列结束点 提取标量值 快速访问标量:效果同上 用整数位置选择: 用整数切片:  显式提取值(好用) 总结  ---- 前言         ...,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我...Pandas 就像一把万能瑞士军刀,下面仅列出了它的部分优势 : 处理浮点与非浮点数据里的缺失数据,表示为 NaN; 大小可变:插入或删除 DataFrame 等多维对象的列; 自动、显式数据对齐:显式地将对象与一组标签对齐...比如,DataFrame 是 Series 的容器,Series 则是标量的容器。使用这种方式,可以在容器中以字典的形式插入或删除对象。...处理 DataFrame 等表格数据时,index(行)或 columns(列)比 axis 0 和 axis 1 更直观。

    2.2K50

    猿创征文|数据导入与预处理-第3章-pandas基础

    2.如果再发布的只是二进制类库/软件,则需要在类库/软件的文档和版权声明中包含原来代码中的BSD协议。 3.不可以用开源代码的作者/机构名字和原来产品的名字做市场推广。...# 核心笔记:df.loc[label]主要针对index选择行,同时支持指定index,及默认数字index 输出为: df.iloc[] - 按照整数位置(从轴的0到length-1)选择行...# df.iloc[] - 按照整数位置(从轴的0到length-1)选择行 # 类似list的索引,其顺序就是dataframe的整数位置,从0开始计 df = pd.DataFrame(np.random.rand...pandas中可以使用[]、loc、iloc、at和iat这几种方式访问Series类对象和DataFrame类对象的数据。...使用at和iat访问数据 pandas中还可以使用at和iat访问数据,与前两种方式相比,这种方式可以访问DataFrame类对象的单个数据。

    14K20

    Pandas数据处理1、DataFrame删除NaN空值(dropna各种属性值控制超全)

    Pandas数据处理——渐进式学习 ---- 目录 Pandas数据处理——渐进式学习 前言 环境 DataFrame删除NaN空值 dropna函数参数 测试数据 删除所有有空的行 axis属性值...,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字,可是这个数字是怎么推断出来的就是很复杂了...,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了,因为我发现没有Pandas处理基本上想好好的操作图片数组真的是相当的麻烦...版本:1.4.4 ---- DataFrame删除NaN空值 在数据操作的时候我们经常会见到NaN空值的情况,很耽误我们的数据清理,那我们使用dropna函数删除DataFrame中的空值。...df = df.dropna(thresh=2) print(df) 有2个nan就会删除行 subset属性值 我这里清除的是[name,age]两列只要有NaN的值就会删除行 import pandas

    4.1K20

    Pandas知识点-缺失值处理

    如果数据量较大,再配合numpy中的any()和all()函数就行了。 需要特别注意两点: 如果某一列数据全是空值且包含pd.NaT,np.nan和None会自动转换成pd.NaT。...从Python解释器来看,np.nan的类型是float,None的类型是NoneType,两者在Pandas中都显示为NaN,pd.NaT的类型是Pandas中的NaTType,显示为NaT。...此外,在数据处理的过程中,也可能产生缺失值,如除0计算,数字与空值计算等。 二、判断缺失值 1....自定义缺失值的判断和替换 isin(values): 判断Series或DataFrame中是否包含某些值,可以传入一个可迭代对象、Series、DataFrame或字典。...subset: 删除空值时,只判断subset指定的列(或行)的子集,其他列(或行)中的空值忽略,不处理。当按行进行删除时,subset设置成列的子集,反之。

    4.9K40

    Python科学计算之Pandas

    这是导入Pandas的标准方式。显然,我们不希望每时每刻都在程序中写’pandas’,但是保持代码简洁、避免命名冲突还是相当重要的。因而我们折衷一下,用‘pd’代替“pandas’。...在此,我将采用英国政府数据中关于降雨量数据,因为他们十分易于下载。此外,我还下载了一些日本降雨量的数据来使用。 ? 这里我们从csv文件中读取到了数据,并将他们存入了dataframe中。...类似于head,我们只需要调用tail函数并传入我们想获取的行数。需要注意的是,Pandas不是从dataframe的结尾处开始倒着输出数据,而是按照它们在dataframe中固有的顺序输出给你。...这里,loc和iloc一样会返回你所索引的行数据的一个series。唯一的不同是此时你使用的是字符串标签进行引用,而不是数字标签。 ix是另一个常用的引用一行的方法。...正如loc和iloc,上述代码将返回一个series包含你所索引的行的数据。 既然ix可以完成loc和iloc二者的工作,为什么还需要它们呢?最主要的原因是ix有一些轻微的不可预测性。

    2.9K00

    Pandas删除数据的几种情况

    开始之前,pandas中DataFrame删除对象可能存在几种情况 1、删除具体列 2、删除具体行 3、删除包含某些数值的行或者列 4、删除包含某些字符、文字的行或者列 本文就针对这四种情况探讨一下如何操作...如果index为3,则会将前4条记录都删除。这个方法支持一个范围,以及用负数表示从末尾删除。...删除特定数值的行(删除成交金额小于10000) In [7]: df[ df['成交金额'] > 10000] Out[7]: 成交数量 成交金额 摘要 证券名称 2018...删除某列包含特殊字符的行 In [11]: df[ ~ df['证券名称'].str.contains('联通') ] Out[11]: 成交数量 成交金额 摘要 证券名称...Dataframe 2、pandas过滤包含特定字符串的行 3、Pandas dataframe怎么删除名称包含特定字符串的列?

    1.8K10

    最全面的Pandas的教程!没有之一!

    和 NumPy 数组不同,Pandas 的 Series 能存放各种不同类型的对象。 从 Series 里获取数据 访问 Series 里的数据的方式,和 Python 字典基本一样: ?...从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...请注意,如果你没有指定 axis 参数,默认是删除行。 删除列: ? 类似的,如果你使用 .fillna() 方法,Pandas 将对这个 DataFrame 里所有的空值位置填上你指定的默认值。...image 这里传入 index=False 参数是因为不希望 Pandas 把索引列的 0~5 也存到文件中。

    26K64

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    DataFrame Pandas 中的 DataFrame 类似于 Excel 工作表。虽然 Excel 工作簿可以包含多个工作表,但 Pandas DataFrames 独立存在。 3....在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。 默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。

    19.6K20

    机器学习库:pandas

    写在开头 在机器学习中,我们除了关注模型的性能外,数据处理更是必不可少,本文将介绍一个重要的数据处理库pandas,将随着我的学习过程不断增加内容 基本数据格式 pandas提供了两种数据类型:Series...和DataFrame,在机器学习中主要使用DataFrame,我们也重点介绍这个 DataFrame dataframe是一个二维的数据结构,常用来处理表格数据 使用代码 import pandas as...,包含行与列的信息 数据选取 iloc 我觉得pandas里面选取数据的一个很通用的方法是iloc pd.iloc[行序号, 列序号] iloc的参数用逗号隔开,前面是行序号,后面是列序号 import...) 我们这里指定显示前2行,不指定默认值是前5行 describe describe方法可以描述表格所有列的数字特征,中位数,平均值等 import pandas as pd a = {"a...在机器学习竞赛时,有时我们想删除一些无用特征,怎么实现删除无用特征的列呢?

    14510

    你一定不能错过的pandas 1.0.0四大新特性

    简介 毫无疑问pandas已经成为基于Python的数据分析领域最重要的包,而就在最近,pandas终于迎来了1.0.0版本,对于pandas来说这是一次更新是里程碑式的,删除了很多旧版本中臃肿的功能,...,而现在的StringDtype则只允许存储字符串对象 我们通过下面的例子更好的理解这个新特性,首先我们在excel中创建如下的表格(图2),其包含两列V1和V2,且V1中的元素并不是纯粹的字符串,混杂了数字...,因为StringDtype只允许字符串出现,包含数字1的V1便被拒绝转换为string型,而对于V2: # 对V2进行强制类型 StringDtype_test['V2'].astype('string...') 图5 则正常完成了数据类型的转换,而pandas中丰富的字符串方法对新的string同样适用,譬如英文字母大写化: StringDtype_test['V2'].astype('string'...()排序或使用drop_duplicates()去除数据框中的重复值时,经常会发现处理后的结果index随着排序或行的删除而被打乱,在index无意义时我们需要使用reset_index()方法对结果的

    68020

    Pandas 第一轮零基础扫盲

    例如 Numpy 是基于数组的运算,但是在实际工作中,我们的数据元素会非常复杂,会同时包含文字格式、数字格式、时间格式等,显然 Numpy就不适用了。...Pandas 常用的数据结构有两种:Series 和 DataFrame 。其中 Series 是一个带有名称和索引的一维数组,而 DataFrame 则是用来表示多维的数组结构。...总结如下: 快速高效的数据结构 智能的数据处理能力 方便的文件存取功能 科研及商业应用广泛 对于 Pandas 有两种基础的数据结构,基本上我们在使用的时候就是处理 Series 和 DataFrame...columns 时要指定 axis=1; # index 直接指定要删除的行 # columns 直接指定要删除的列 # inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新...因此,删除行列有两种方式: labels=None,axis=0 的组合 index 或 columns 直接指定要删除的行或列 In [111]: df = pd.DataFrame(np.arange

    2.2K00

    Pandas数据处理3、DataFrame去重函数drop_duplicates()详解

    Pandas数据处理3、DataFrame去重函数drop_duplicates()详解 ---- 目录 Pandas数据处理3、DataFrame去重函数drop_duplicates()详解 前言...,但是她很明显不是一个真正意义存在的图片,我们需要很复杂的推算以及各种炼丹模型生成的AI图片,我自己认为难度系数很高,我仅仅用了64个文字形容词就生成了她,很有初恋的感觉,符合审美观,对于计算机来说她是一组数字...,可是这个数字是怎么推断出来的就是很复杂了,我们在模型训练中可以看到基本上到处都存在着Pandas处理,在最基础的OpenCV中也会有很多的Pandas处理,所以我OpenCV写到一般就开始写这个专栏了...版本:1.4.4 基础函数的使用 Pandas数据处理——渐进式学习1、Pandas入门基础 Pandas数据处理——渐进式学习、DataFrame(函数检索-请使用Ctrl+F搜索) ---- drop_duplicates...true就是重新排序,我们会看到行是0,1,2的排序。

    97830

    Python进阶之Pandas入门(三) 最重要的数据流操作

    .head()默认输出DataFrame的前五行,但是我们也可以传递一个数字:例如,movies_df.head(10)将输出前十行。 要查看最后五行,请使用.tail()。....,比如行和列的数量、非空值的数量、每个列中的数据类型以及DataFrame使用了多少内存。...我们的movies DataFrame中有1000行和11列。 在清理和转换数据时,您将需要经常使用.shape。例如,您可能会根据一些条件过滤一些行,然后想要快速知道删除了多少行。...我们用temp捕获这个副本,所以我们不处理实际数据。 通过调用.shape很快就证明了我们的DataFrame行增加了一倍。...由于我们在前面的例子中没有定义keep代码,所以它默认为first。这意味着如果两行是相同的,panda将删除第二行并保留第一行。使用last有相反的效果:第一行被删除。

    2.7K20

    pandas操作excel全总结

    首先,了解下pandas中两个主要的数据结构,一个是Series,另一个是DataFrame。 Series一种增强的一维数组,类似于列表,由索引(index)和值(values)组成。...DataFrame是一个类似表格的二维数据结构,索引包括列索引和行索引,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series。...默认是'\t'(也就是tab)切割数据集的 header:指定表头,即列名,默认第一行,header = None, 没有表头,全部为数据内容 encoding:文件编码方式,不设置此选项, Pandas...index_col ,指定索引对应的列为数据框的行标签,默认 Pandas 会从 0、1、2、3 做自然排序分配给各条记录。...「注意」 当使用显式索引(即data['a':'c'])作切片时,结果「包含」最后一个索引;而当使用隐式索引(即 data[0:2]) 作切片时,结果「不包含」最后一个索引。

    22K44

    Python处理Excel数据的方法

    sheet = book.sheet_by_name(u'Sheet1') # 通过名称获取 u表示后面字符串以 Unicode 格式 进行编码,一般用在中文字符串前面,以防乱码 # 获取行数和列数...nrows = sheet.nrows ncols = sheet.ncols # 获取一行和一列 row = sheet.row_values(i) # i是行数,从0开始计数...和sheet.delete_cols(n)分别表示删除第m行、第n列 修改单元格内容:sheet.cell(m,n) = '内容1'或者sheet['B3'] = '内容2' 在最后追加行:sheet.append...这里读取数据并不包含表头 print("读取指定行的数据:\n{0}".format(data)) # 读取指定的多行: data2=sheet.loc[[0,1]].values print("读取指定行的数据...本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌侵权/违法违规的内容, 请发送邮件至 举报,一经查实,本站将立刻删除。

    5.4K40

    (数据科学学习手札73)盘点pandas 1.0.0中的新特性

    的数据分析领域最重要的包,而就在最近,pandas终于迎来了1.0.0版本,对于pandas来说这是一次更新是里程碑式的,删除了很多旧版本中臃肿的功能,新增了一些崭新的特性,更加专注于高效实用的数据分析...图2),其包含两列V1和V2,且V1中的元素并不是纯粹的字符串,混杂了数字,而V2则为纯粹的字符串列: ?...图4   可以看到,运行这段代码后抛出了对应的错误,因为StringDtype只允许字符串出现,包含数字1的V1便被拒绝转换为string型,而对于V2: # 对V2进行强制类型 StringDtype_test...图5   则正常完成了数据类型的转换,而pandas中丰富的字符串方法对新的string同样适用,譬如英文字母大写化: StringDtype_test['V2'].astype('string').str.upper...()去除数据框中的重复值时,经常会发现处理后的结果index随着排序或行的删除而被打乱,在index无意义时我们需要使用reset_index()方法对结果的index进行重置,而在新版本的pandas

    78331
    领券