首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从Spark Streaming DataFrame中删除(损坏)不符合模式的行(从Kafka传入的JSON数据)

在Spark Streaming中,可以使用DataFrame API来处理从Kafka传入的JSON数据,并删除不符合模式的行。下面是一个完善且全面的答案:

Spark Streaming是Apache Spark的一个组件,用于实时处理大规模数据流。它提供了一种高级抽象层,可以将实时数据流转换为连续的、可处理的数据流。在Spark Streaming中,可以使用DataFrame API来处理数据。

DataFrame是一种分布式数据集,以表格形式组织,具有丰富的数据操作功能。在处理从Kafka传入的JSON数据时,可以将数据流转换为DataFrame,并应用模式(Schema)来验证数据的结构和类型。

要从Spark Streaming DataFrame中删除不符合模式的行,可以使用filter操作。filter操作接受一个函数作为参数,该函数返回一个布尔值,用于判断行是否符合给定的条件。在这种情况下,我们可以编写一个函数来检查每一行是否符合JSON模式,如果不符合,则返回false,从而将其过滤掉。

以下是一个示例代码:

代码语言:scala
复制
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

val spark = SparkSession.builder()
  .appName("Spark Streaming Example")
  .master("local[2]")
  .getOrCreate()

// 从Kafka读取JSON数据流
val kafkaDF = spark.readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "localhost:9092")
  .option("subscribe", "topic_name")
  .load()

// 将数据流转换为DataFrame
val jsonDF = kafkaDF.selectExpr("CAST(value AS STRING)").select(from_json($"value", schema).as("data"))
val filteredDF = jsonDF.filter(row => isValid(row.getAs[String]("data")))

// 定义一个函数来检查JSON数据是否符合模式
def isValid(json: String): Boolean = {
  // 在这里编写验证逻辑,判断JSON是否符合模式
}

// 输出结果到控制台
val query = filteredDF.writeStream
  .outputMode("append")
  .format("console")
  .start()

query.awaitTermination()

在上面的代码中,我们首先使用selectExpr将Kafka数据流转换为DataFrame,并使用from_json函数将JSON字符串解析为结构化的数据。然后,我们使用filter操作来过滤不符合模式的行,其中isValid函数用于检查JSON数据是否符合模式。

对于这个问题,腾讯云提供了一系列与云计算相关的产品和服务,例如云服务器、云数据库、云存储等。您可以根据具体需求选择适合的产品。更多关于腾讯云的产品和服务信息,您可以访问腾讯云官方网站:腾讯云

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

【疑惑】如何从 Spark 的 DataFrame 中取出具体某一行?

如何从 Spark 的 DataFrame 中取出具体某一行?...根据阿里专家Spark的DataFrame不是真正的DataFrame-秦续业的文章-知乎[1]的文章: DataFrame 应该有『保证顺序,行列对称』等规律 因此「Spark DataFrame 和...我们可以明确一个前提:Spark 中 DataFrame 是 RDD 的扩展,限于其分布式与弹性内存特性,我们没法直接进行类似 df.iloc(r, c) 的操作来取出其某一行。...1/3排序后select再collect collect 是将 DataFrame 转换为数组放到内存中来。但是 Spark 处理的数据一般都很大,直接转为数组,会爆内存。...给每一行加索引列,从0开始计数,然后把矩阵转置,新的列名就用索引列来做。 之后再取第 i 个数,就 df(i.toString) 就行。 这个方法似乎靠谱。

4.1K30
  • Structured Streaming

    Spark一直处于不停的更新中,从Spark 2.3.0版本开始引入持续流式处理模型后,可以将原先流处理的延迟降低到毫秒级别。...一样,也是源源不断的数据流,区别在于,Spark Streaming采用的数据抽象是DStream(本质上就是一系列RDD),而Structured Streaming采用的数据抽象是DataFrame...Structured Streaming可以使用Spark SQL的DataFrame/Dataset来处理数据流。...虽然Spark SQL也是采用DataFrame作为数据抽象,但是,Spark SQL只能处理静态的数据,而Structured Streaming可以处理结构化的数据流。...(四)Rate源 Rate源可每秒生成特定个数的数据行,每个数据行包括时间戳和值字段。时间戳是消息发送的时间,值是从开始到当前消息发送的总个数,从0开始。

    3900

    Structured Streaming快速入门详解(8)

    接着上一篇《Spark Streaming快速入门系列(7)》,这算是Spark的终结篇了,从Spark的入门到现在的Structured Streaming,相信很多人学完之后,应该对Spark摸索的差不多了...Structured Streaming最核心的思想就是将实时到达的数据不断追加到unbound table无界表,到达流的每个数据项(RDD)就像是表中的一个新行被附加到无边界的表中.这样用户就可以用静态结构化数据的批处理查询方式进行流计算...如图所示, 第一行表示从socket不断接收数据, 第二行可以看成是之前提到的“unbound table", 第三行为最终的wordCounts是结果集。...支持text、csv、json、parquet等文件类型。 Kafka source: 从Kafka中拉取数据,与0.10或以上的版本兼容,后面单独整合Kafka 2.1.1....这里有三种输出模型: 1.Append mode:输出新增的行,默认模式。每次更新结果集时,只将新添加到结果集的结果行输出到接收器。仅支持添加到结果表中的行永远不会更改的查询。

    1.4K30

    Spark Structured Streaming 使用总结

    这里我们为StreamingQuery指定以下配置: 从时间戳列中导出日期 每10秒检查一次新文件(即触发间隔) 将解析后的DataFrame中的转换数据写为/cloudtrail上的Parquet格式表...例如,Parquet和ORC等柱状格式使从列的子集中提取值变得更加容易。基于行的存储格式(如Avro)可有效地序列化和存储提供存储优势的数据。然而,这些优点通常以灵活性为代价。...with Structured Streaming 此部分将讨论使用Spark SQL API处理转换来自Kafka的复杂数据流,并存储到HDFS MySQL等系统中。...[kafka-topic.png] 我们有三种不同startingOffsets选项读取数据: earliest - 在流的开头开始阅读(不包括已从Kafka中删除的数据) latest - 从现在开始...例如,如果我们想要准确地获取某些其他系统或查询中断的位置,则可以利用此选项 3.2 Structured Streaming 对Kafka支持 从Kafka中读取数据,并将二进制流数据转为字符串: #

    9.1K61

    Spark Structured Streaming + Kafka使用笔记

    ” 用于 batch(批处理) streaming 和 batch 当一个查询开始的时候, 或者从最早的偏移量:“earliest”,或者从最新的偏移量:“latest”,或JSON字符串指定为每个topicpartition...,或者从最新的偏移量:“latest”, 或者为每个topic分区指定一个结束偏移的json字符串。...failOnDataLoss true or false true streaming query 当数据丢失的时候,这是一个失败的查询。(如:主题被删除,或偏移量超出范围。)这可能是一个错误的警报。...kafkaConsumer.pollTimeoutMs long 512 streaming and batch 在执行器中从卡夫卡轮询执行数据,以毫秒为超时间隔单位。...解析数据 对于Kafka发送过来的是JSON格式的数据,我们可以使用functions里面的from_json()函数解析,并选择我们所需要的列,并做相对的transformation处理。

    1.6K20

    1,StructuredStreaming简介

    然而,当查询一旦启动,Spark 会不停的检查Socket链接是否有新的数据。如果有新的数据,Spark 将会在新数据上运行一个增量的查询,并且组合之前的counts结果,计算得到更新后的统计。...3.1 source 目前支持的source有三种: File Sourcec:从给定的目录读取数据,目前支持的格式有text,csv,json,parquet。容错。...Kafka Source:从kafka拉取数据。仅兼容kafka 0.10.0或者更高版本。容错。 Socket Source(for testing):从一个连接中读取UTF8编码的文本数据。...不同类型的Streaming query支持不同的输出模式。...三 注意事项 Structured Streaming不会管理整个输入表。它会从Streaming数据源中读取最近的可用数据,然后增量的处理它并更新结果,最后废弃源数据。

    92990

    Spark Structured Streaming + Kafka使用笔记

    这篇博客将会记录Structured Streaming + Kafka的一些基本使用(Java 版) spark 2.3.0 1...." 用于 batch(批处理) streaming 和 batch 当一个查询开始的时候, 或者从最早的偏移量:"earliest",或者从最新的偏移量:"latest",或JSON字符串指定为每个topicpartition...(如:主题被删除,或偏移量超出范围。)这可能是一个错误的警报。当它不像你预期的那样工作时,你可以禁用它。如果由于数据丢失而不能从提供的偏移量中读取任何数据,批处理查询总是会失败。...and batch 在执行器中从卡夫卡轮询执行数据,以毫秒为超时间隔单位。...解析数据 对于Kafka发送过来的是JSON格式的数据,我们可以使用functions里面的from_json()函数解析,并选择我们所需要的列,并做相对的transformation处理。

    3.5K31

    看了这篇博客,你还敢说不会Structured Streaming?

    Structured Streaming最核心的思想就是将实时到达的数据不断追加到unbound table无界表,到达流的每个数据项(RDD)就像是表中的一个新行被附加到无边界的表中.这样用户就可以用静态结构化数据的批处理查询方式进行流计算...如图所示, 第一行表示从socket不断接收数据, 第二行可以看成是之前提到的“unbound table", 第三行为最终的wordCounts是结果集...Socket source (for testing): 从socket连接中读取文本内容。 File source: 以数据流的方式读取一个目录中的文件。...支持text、csv、json、parquet等文件类型。 Kafka source: 从Kafka中拉取数据,与0.10或以上的版本兼容,后面单独整合Kafka。...这里有三种输出模型: 1.Append mode:输出新增的行,默认模式。每次更新结果集时,只将新添加到结果集的结果行输出到接收器。仅支持添加到结果表中的行永远不会更改的查询。

    1.6K40

    Apache Spark 2.2.0 中文文档 - Structured Streaming 编程指南 | ApacheCN

    spark.implicits._ 接下来,我们创建一个 streaming DataFrame ,它表示从监听 localhost:9999 的服务器上接收的 text data (文本数据),并且将...Update Mode(更新模式) - 只有自上次触发后 Result Table 中更新的 rows (行)将被写入 external storage (外部存储)(从 Spark 2.1.1 之后可用...Deduplication (Streaming 去重) 您可以使用 events 中的 unique identifier (唯一标识符)对 data streams 中的记录进行重复数据删除。...该查询将使用 watermark 从以前的记录中删除旧的状态数据,这些记录不会再受到任何重复。 这界定了查询必须维护的状态量。...Complete mode (完全模式)不会删除旧的聚合状态,因为从定义这个模式          保留 Result Table 中的所有数据。

    5.3K60

    Note_Spark_Day13:Structured Streaming(内置数据源、自定义Sink(2种方式)和集成Kafka)

    其中timestamp是一个Timestamp含有信息分配的时间类型,并且value是Long(包含消息的计数从0开始作为第一 行)类型。...Structured Streaming消费Kafka数据,采用的是poll方式拉取数据,与Spark Streaming中NewConsumer API集成方式一致。...从Kafka 获取数据后Schema字段信息如下,既包含数据信息有包含元数据信息: ​ 查看官方提供从Kafka消费数据代码可知,获取Kafka数据以后,封装到DataFrame中,获取其中value...* 1、从KafkaTopic中获取基站日志数据(模拟数据,JSON格式数据) * 2、ETL:只获取通话状态为success日志数据 * 3、最终将ETL的数据存储到Kafka Topic...从KafkaTopic中获取基站日志数据(模拟数据,文本数据) val kafkaStreamDF: DataFrame = spark .readStream .format("kafka

    2.6K10

    Note_Spark_Day14:Structured Streaming(以结构化方式处理流式数据,底层分析引擎SparkSQL引擎)

    ,表示针对每批次数据输出,可以重用SparkSQL中数据源的输出 3、集成Kafka(数据源Source和数据终端Sink) 既可以从Kafka消费数据,也可以向Kafka写入数据 - 数据源Source...从Kafka Topic中获取基站日志数据(模拟数据,文本数据) val kafkaStreamDF: DataFrame = spark .readStream .format("kafka...从Kafka Topic中获取基站日志数据(模拟数据,文本数据) val kafkaStreamDF: DataFrame = spark .readStream .format("kafka...目前(Spark2.4.5版本)仅仅支持从Kafka消费数据,向Kafka写入数据,当前ContinuesProcessing处理模式 package cn.itcast.spark.continuous...06 * 这条数据发送到Kafka,又到了Spark Streaming中处理,已经是10:08,这个处理的时间就是process Time。

    2.5K20

    10万字的Spark全文!

    不实际存储真正要计算的数据,而是记录了数据的位置在哪里,数据的转换关系(调用了什么方法,传入什么函数) RDD中的所有转换都是惰性求值/延迟执行的,也就是说并不会直接计算。...Broker : 安装Kafka服务的机器就是一个broker Producer :消息的生产者,负责将数据写入到broker中(push) Consumer:消息的消费者,负责从kafka中拉取数据...将会创建和kafka分区数一样的rdd的分区数,而且会从kafka中并行读取数据,spark中RDD的分区数和kafka中的分区数据是一一对应的关系。...支持text、csv、json、parquet等文件类型。 Kafka source: 从Kafka中拉取数据,与0.10或以上的版本兼容,后面单独整合Kafka。...这里有三种输出模型: 1.Append mode:输出新增的行,默认模式。每次更新结果集时,只将新添加到结果集的结果行输出到接收器。仅支持添加到结果表中的行永远不会更改的查询。

    1.5K10

    Structured Streaming 编程指南

    spark.implicits._ 然后,创建一个流式 Streaming DataFrame 来代表不断从 localhost:9999 接收数据,并在该 DataFrame 上执行 transform...Update Mode:只有自上次触发后结果表中更新的行将被写入外部存储(自 Spark 2.1.1 起可用)。 请注意,这与完全模式不同,因为此模式仅输出自上次触发以来更改的行。...请注意,文件必须以原子方式放置在给定的目录中,这在大多数文件系统中可以通过文件移动操作实现。 Kafka source:从 Kafka 拉取数据。兼容 Kafka 0.10.0 以及更高版本。...这意味着系统需要知道什么时候可以从内存状态中删除旧的聚合,因为 application 不会再为该聚合更晚的数据进行聚合操作。...(去重) 你可以使用事件中的唯一标识符对数据流中的记录进行重复数据删除。

    2K20

    2021年大数据Spark(四十八):Structured Streaming 输出终端位置

    文件接收器 将输出存储到目录文件中,支持文件格式:parquet、orc、json、csv等,示例如下: 相关注意事项如下:  支持OutputMode为:Append追加模式;  必须指定输出目录参数...,需要两个参数:微批次的输出数据DataFrame或Dataset、微批次的唯一ID。...3.应用其他DataFrame操作,流式DataFrame中不支持许多DataFrame和Dataset操作,使用foreachBatch可以在每个微批输出上应用其中一些操作,但是,必须自己解释执行该操作的端到端语义...但是,可以使用提供给该函数的batchId作为重复数据删除输出并获得一次性保证的方法。 5.foreachBatch不适用于连续处理模式,因为它从根本上依赖于流式查询的微批量执行。...{DataFrame, SaveMode, SparkSession} /**  * 使用Structured Streaming从TCP Socket实时读取数据,进行词频统计,将结果存储到MySQL

    1.4K40

    2021年大数据Spark(五十一):Structured Streaming 物联网设备数据分析

    模拟一个智能物联网系统的数据统计分析,产生设备数据发送到Kafka,结构化流Structured Streaming实时消费统计。...从Kafka读取数据,底层采用New Consumer API     val iotStreamDF: DataFrame = spark.readStream       .format("kafka...对获取数据进行解析,封装到DeviceData中     val etlStreamDF: DataFrame = iotStreamDF       // 获取value字段的值,转换为String类型...从Kafka读取数据,底层采用New Consumer API     val iotStreamDF: DataFrame = spark.readStream       .format("kafka...对获取数据进行解析,封装到DeviceData中     val etlStreamDF: DataFrame = iotStreamDF       // 获取value字段的值,转换为String类型

    91030

    Spark入门指南:从基础概念到实践应用全解析

    Spark 支持多种数据源,包括 Hive 表、Parquet 和 JSON 等。 Spark Streaming Spark Streaming 是一个用于处理动态数据流的 Spark 组件。...DataFrame DataFrame 是 Spark 中用于处理结构化数据的一种数据结构。它类似于关系数据库中的表,具有行和列。每一列都有一个名称和一个类型,每一行都是一条记录。...例如,从 JSON 文件中读取数据并创建 DataFrame: import org.apache.spark.sql.SparkSession val spark = SparkSession.builder.appName...Complete 每当有更新时,将流 DataFrame/Dataset 中的所有行写入接收器。 Update 每当有更新时,只将流 DataFrame/Dataset 中更新的行写入接收器。...Kafka 中 //selectExpr 是一个 DataFrame 的转换操作,它允许你使用 SQL 表达式来选择 DataFrame 中的列。

    68041

    基于大数据和机器学习的Web异常参数检测系统Demo实现

    DataFrame DataFrame是spark中结构化的数据集,类似于数据库的表,可以理解为内存中的分布式表,提供了丰富的类SQL操作接口。...数据采集与存储 获取http请求数据通常有两种方式,第一种从web应用中采集日志,使用logstash从日志文件中提取日志并泛化,写入Kafka(可参见兜哥文章);第二种可以从网络流量中抓包提取http...数据存储 开启一个SparkStreaming任务,从kafka消费数据写入Hdfs,Dstream的python API没有好的入库接口,需要将Dstream的RDD转成DataFrame进行保存,保存为...算法实现 抽取器(Extractor) 抽取器实现原始数据的参数提取和数据泛化,传入一条json格式的http请求数据,可以返回所有参数的id、参数类型、参数名、参数的观察状态序列。 代码示例: ?...检测任务 Spark Streaming检测任务实时获取kafka流数据,抽取出数据的参数,如果参数有训练模型,就计算参数得分,小于基线输出告警到Elasticsearch。 核心代码: ? ? ?

    2.7K80
    领券