首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

PySpark SQL——SQL和pd.DataFrame的结合体

,文件包括Json、csv等,数据库包括主流关系型数据库MySQL,以及数仓Hive,主要是通过sprak.read属性+相应数据源类型进行读写,例如spark.read.csv()用于读取csv文件,...,用法与SQL中的select关键字类似,可用于提取其中一列或多列,也可经过简单变换后提取。...SQL中"*"提取所有列,以及对单列进行简单的运算和变换,具体应用场景可参考pd.DataFrame中赋值新列的用法,例如下述例子中首先通过"*"关键字提取现有的所有列,而后通过df.age+1构造了名字为...这也是一个完全等同于SQL中相应关键字的操作,并支持不同关联条件和不同连接方式,除了常规的SQL中的内连接、左右连接、和全连接外,还支持Hive中的半连接,可以说是兼容了数据库的数仓的表连接操作 union...提取相应数值,timestamp转换为时间戳、date_format格式化日期、datediff求日期差等 这些函数数量较多,且与SQL中相应函数用法和语法几乎一致,无需全部记忆,仅在需要时查找使用即可

10K20

一场pandas与SQL的巅峰大战(三)

在前两篇文章中,我们从多个角度,由浅入深,对比了pandas和SQL在数据处理方面常见的一些操作。...◆ ◆ ◆ ◆ ◆ 数据概况 数据方面,我们依然采用前面文章的订单数据,样例如下。在正式开始学习之前,我们需要把数据加载到dataframe和数据表中。...无论是在read_csv中还是在read_excel中,都有parse_dates参数,可以把数据集中的一列或多列转成pandas中的日期格式。...' overwrite into table t_order; select * from t_order limit 20; 在hive中加载数据我们需要先建立表,然后把文本文件中的数据load到表中...日期获取 1.获取当前日期,年月日时分秒 pandas中可以使用now()函数获取当前时间,但需要再进行一次格式化操作来调整显示的格式。我们在数据集上新加一列当前时间的操作如下: ?

4.5K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    浅谈pandas,pyspark 的大数据ETL实践经验

    脏数据的清洗 比如在使用Oracle等数据库导出csv file时,字段间的分隔符为英文逗号,字段用英文双引号引起来,我们通常使用大数据工具将这些数据加载成表格的形式,pandas ,spark中都叫做...x utf-8 * 在Linux中专门提供了一种工具convmv进行文件名编码的转换,可以将文件名从GBK转换成UTF-8编码,或者从UTF-8转换到GBK。...import * diagnosis_sdf_new = diagnosis_sdf.rdd.toDF(diagnosis_sdf_tmp.schema) 2.3 pyspark dataframe 新增一列并赋值...缺失值的处理 pandas pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。...").dropDuplicates() 当然如果数据量大的话,可以在spark环境中算好再转化到pandas的dataframe中,利用pandas丰富的统计api 进行进一步的分析。

    5.5K30

    一场pandas与SQL的巅峰大战(二)

    hive方面我们新建了一张表,并把同样的数据加载进了表中,后续直接使用即可。 ? ? 开始学习 一、字符串的截取 对于原始数据集中的一列,我们常常要截取其字串作为新的列来使用。...例如我们想求出每一条订单对应的日期。需要从订单时间ts或者orderid中截取。在pandas中,我们可以将列转换为字符串,截取其子串,添加为新的列。...对于字符串截取的操作,Hive SQL中有substr函数,它在MySQL和Hive中的用法是一样的substr(string A,int start,int len)表示从字符串A中截取起始位置为start...图片中的代码: #python import pandas as pd order = pd.read_csv('order.csv', names=['id', 'ts', 'uid', 'orderid...SQL select * from t_order where ts like "%08-01%"; 2.假设要实现提取ts中的日期信息(前10位),pandas里支持正则表达式的extract

    2.3K20

    别说你会用Pandas

    说到Python处理大数据集,可能会第一时间想到Numpy或者Pandas。 这两个库使用场景有些不同,Numpy擅长于数值计算,因为它基于数组来运算的,数组在内存中的布局非常紧凑,所以计算能力强。...尽管如此,Pandas读取大数据集能力也是有限的,取决于硬件的性能和内存大小,你可以尝试使用PySpark,它是Spark的python api接口。...,这可能会将所有数据加载到单个节点的内存中,因此对于非常大的数据集可能不可行)。...,并对它们应用一些函数 # 假设我们有一个名为 'salary' 的列,并且我们想要增加它的值(仅作为示例) df_transformed = df.withColumn("salary_increased...", df["salary"] * 1.1) # 显示转换后的数据集的前几行 df_transformed.show(5) # 将结果保存到新的 CSV 文件中 # 注意:Spark

    12910

    Python与Excel协同应用初学者指南

    恭喜你,你的环境已经设置好了!准备好开始加载文件并分析它们了。 将Excel文件作为Pandas数据框架加载 Pandas包是导入数据集并以表格行-列格式呈现数据集的最佳方法之一。...pd.ExcelWriter函数接受两个参数,文件名和是xlsxwriter的引擎。 接下来,将writer变量传递给to_excel()函数,并指定工作表名称。...要创建数据,可以按照下面的工作簿进行操作,其中有三张工作表将加载到Python中: 图9 load_workbook()函数接受文件名作为参数,并返回一个workbook对象wb,它代表文件。...这种从单元格中提取值的方法在本质上与通过索引位置从NumPy数组和Pandas数据框架中选择和提取值非常相似。...另一个for循环,每行遍历工作表中的所有列;为该行中的每一列填写一个值。

    17.4K20

    在Python中绘图,更丰富,更专业

    标签:Python与Excel,pandas Excel使绘制图形变得非常容易。Python也是如此!这里,我们将快速熟悉如何在Python中绘制图形。...Python成为优秀的绘图工具(对比Excel)的一个原因是,可以轻松地从Internet获取数据,然后使用Python进行绘图。如果我们需要使用一些在线数据并想在Excel中绘图,我们该怎么办?...也许把它下载到我们的电脑上,然后把它画出来,或者使用笨重的VBA或Power Query获取数据,然后将其绘制成图形。如果你以前做过的话,相信这些都不是好经验。...这就是为什么我们应该使用Python进行无缝、轻松的数据提取、操作和绘图! 准备用于演示的数据框架 难道你不认为使用Python从互联网获取数据很容易吗?让我们看看。...df = df.iloc[:,4:] global_num = df.sum() 图2 现在我们有了一个一维表:日期和相应日期的确认新冠病毒病例。我们将用它来绘制一段时间内的全球新冠病毒病例。

    1.8K20

    干货:手把手教你用Python读写CSV、JSON、Excel及解析HTML

    如果你装了Python,没有pandas,你可以从 https://github.com/pydata/pandas/releases/tag/v0.17.1 下载,并按照文档安装到你的操作系统中。...用索引可以很方便地辨认、校准、访问DataFrame中的数据。索引可以是一列连续的数字(就像Excel中的行号)或日期;你还可以设定多列索引。...拿最新的XLSX格式来说,Excel可以在单个工作表中存储一百多万行及一万六千多列。 1. 准备 要实践这个技法,你要先装好pandas模块。此外没有要求了。 2....从工作簿中提取所有工作表的名字,并存入sheets变量。这里我们的工作簿中只有一个工作表,所以sheets变量就等于'Sacramento'。...原理 pandas 的read_html(...)方法解析HTML文件的DOM结构,从所有table节点中提取数据。第一个参数可以是URL、文件或HTML标签原始字符串。

    8.4K20

    收藏!6道常见hadoop面试题及答案解析

    Hadoop生态系统,拥有15多种框架和工具,如Sqoop,Flume,Kafka,Pig,Hive,Spark,Impala等,以便将数据摄入HDFS,在HDFS中转移数据(即变换,丰富,聚合等),并查询来自...Hadoop的处理框架(如Spark,Pig,Hive,Impala等)处理数据的不同子集,并且不需要管理对共享数据的访问。...CSV文件CSV文件通常用于在Hadoop和外部系统之间交换数据。CSV是可读和可解析的。CSV可以方便地用于从数据库到Hadoop或到分析数据库的批量加载。...Avro文件也是可拆分的,并支持块压缩。更适合需要行级访问的使用模式。这意味着查询该行中的所有列。不适用于行有50+列,但使用模式只需要访问10个或更少的列。...Parquet文件支持块压缩并针对查询性能进行了优化,可以从50多个列记录中选择10个或更少的列。Parquet文件写入性能比非columnar文件格式慢。

    2.9K80

    使用Python进行ETL数据处理

    本文将介绍如何使用Python进行ETL数据处理的实战案例。 一、数据来源 本次实战案例的数据来源是一个包含销售数据的CSV文件,其中包括订单ID、产品名称、销售额、销售日期等信息。...我们需要从这个CSV文件中提取数据,并将其导入到MySQL数据库中。 二、数据提取 数据提取是ETL过程的第一步,我们需要从源数据中获取需要的数据。...在本次实战案例中,我们使用Python的pandas库来读取CSV文件,并将其转换为DataFrame对象,如下所示: import pandas as pd df = pd.read_csv('sales.csv...其中,我们使用pandas提供的to_sql()方法,将DataFrame对象转换为MySQL数据库中的表。 四、数据加载 数据加载是ETL过程的最后一步,它将转换后的数据加载到目标系统中。...我们使用pandas库将CSV文件读取为DataFrame对象,并对其中的销售数据进行了一些处理和转换,然后使用pymysql库将转换后的数据插入到MySQL数据库中。

    1.6K20

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    操作 -------- -------- 9、读写csv -------- 延伸一:去除两个表重复的内容 参考文献 ---- 1、-------- 查 -------- — 1.1 行元素查询操作 —...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...null的筛选出来(代表python的None类型) df = df.filter(isnan("a")) # 把a列里面数据为nan的筛选出来(Not a Number,非数字数据) ---- 3、...互转 Pandas和Spark的DataFrame两者互相转换: pandas_df = spark_df.toPandas() spark_df = sqlContext.createDataFrame...-------- 在Python中,我们也可以使用SQLContext类中 load/save函数来读取和保存CSV文件: from pyspark.sql import SQLContext sqlContext

    30.5K10

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    读取外部数据 Excel 和 pandas 都可以从各种来源以各种格式导入数据。 CSV 让我们从 Pandas 测试中加载并显示提示数据集,这是一个 CSV 文件。...在 Excel 中,您将下载并打开 CSV。在 pandas 中,您将 CSV 文件的 URL 或本地路径传递给 read_csv()。...在 Pandas 中,您通常希望在使用日期进行计算时将日期保留为日期时间对象。输出部分日期(例如年份)是通过电子表格中的日期函数和 Pandas 中的日期时间属性完成的。...请记住,Python 索引是从零开始的。 tips["sex"].str.find("ale") 结果如下: 3. 按位置提取子串 电子表格有一个 MID 公式,用于从给定位置提取子字符串。...获取第一个字符: =MID(A2,1,1) 使用 Pandas,您可以使用 [] 表示法按位置位置从字符串中提取子字符串。请记住,Python 索引是从零开始的。

    19.6K20

    数据分析EPHS(2)-SparkSQL中的DataFrame创建

    本文的开头,咱们正式给该系列取个名字了,就叫数据分析EPHS系列,EPHS分别是Excel、Python、Hive和SparkSQL的简称。...本篇是该系列的第二篇,我们来讲一讲SparkSQL中DataFrame创建的相关知识。 说到DataFrame,你一定会联想到Python Pandas中的DataFrame,你别说,还真有点相似。...包括通过JSON、CSV文件、MySQl和Hive表。 3.1 通过JSON创建 假设我们的JSON文件内容如下: ?...4、总结 今天咱们总结了一下创建Spark的DataFrame的几种方式,在实际的工作中,大概最为常用的就是从Hive中读取数据,其次就可能是把RDD通过toDF的方法转换为DataFrame。...spark.sql()函数中的sql语句,大部分时候是和hive sql一致的,但在工作中也发现过一些不同的地方,比如解析json类型的字段,hive中可以解析层级的json,但是spark的话只能解析一级的

    1.6K20

    SQL和Python中的特征工程:一种混合方法

    这两个表将被加载到该数据库中。 安装sqlalchemy 您需要Pandas和sqlalchemy才能在Python中使用SQL。你可能已经有Pandas了。...根据您的操作系统,可以使用不同的命令进行安装 。 将数据集加载到MySQL服务器 在此示例中,我们将从两个CSV文件加载数据 ,并直接在MySQL中设计工程师功能。...如果只需要数据的子集,则该函数将表名称“ trn_set”(训练集)或“ tst_set”(测试集)作为输入,并使用可选的 limit 子句。 删除唯一列和缺少大多数值的列。...如果您有能力实时提取数据,则可以创建SQL 视图 而不是表。这样,每次在Python中提取数据时,您的数据将始终是最新的。...这种方法的一个基本限制是您必须能够直接使用Python连接到SQL Server。如果无法做到这一点,则可能必须将查询结果下载为CSV文件并将其加载到Python中。 希望这篇文章对您有所帮助。

    2.7K10

    我是一个DataFrame,来自Spark星球

    本文的开头,咱们正式给该系列取个名字了,就叫数据分析EPHS系列,EPHS分别是Excel、Python、Hive和SparkSQL的简称。...本篇是该系列的第二篇,我们来讲一讲SparkSQL中DataFrame创建的相关知识。 说到DataFrame,你一定会联想到Python Pandas中的DataFrame,你别说,还真有点相似。...包括通过JSON、CSV文件、MySQl和Hive表。 3.1 通过JSON创建 假设我们的JSON文件内容如下: ?...4、总结 今天咱们总结了一下创建Spark的DataFrame的几种方式,在实际的工作中,大概最为常用的就是从Hive中读取数据,其次就可能是把RDD通过toDF的方法转换为DataFrame。...spark.sql()函数中的sql语句,大部分时候是和hive sql一致的,但在工作中也发现过一些不同的地方,比如解析json类型的字段,hive中可以解析层级的json,但是spark的话只能解析一级的

    1.7K20

    Python数据分析实战之数据获取三大招

    Open( )函数读取数据 Python内置函数open( ),主要用来从文本中读取数据。...{‘foo’ : [1, 3]} -> 将1,3列合并,并给合并后的列起名为"foo" 2、常见问题 路径内有中文csv >>> import pandas as pd >>> #df=pd.read_csv.../test.csv', index_col=0) ---- 坑2:原本日期格式的列,保存到csv文件后仍为日期格式。但再次读取文件时将以字符串的格式读取到DataFrame。...解决方案: 1, pd.read_csv('./test.csv', parse_dates=[3]) 将特定的日期列解析为日期格式; 2, 先使用默认值file = pd.read_csv('....Numpy读取数据方法与Pandas类似,其包括loadtxt, load, fromfile Methods Describe Return loadtxt 从txt文本中读取数据 从文件中读取的数组

    6.6K30

    Python统计汇总Grafana导出的csv文件到Excel

    需求分析 原始文件分析 原始文件是多个csv表格,第一列为时间戳,每10分钟统计生成一行,其余列为ip地址在该时间段内的访问次数 ?...代码逻辑 流程分析 首先遍历指定目录下的.csv文件,提取文件名生成数组 然后使用pandas库读取csv文件,提取日期和ip,然后统计每个ip当天访问次数,生成新的DataFrame 最后使用xlwings...库将pandas处理后的DataFrame数据写入excel文件,指定文件名作为sheet名 遍历指定目录下.csv文件 主要用到了os模块中的walk()函数,可以遍历文件夹下所有的文件名。...return csv_file pandas处理csv文件 pandas是python环境下最有名的数据统计包,对于数据挖掘和数据分析,以及数据清洗等工作,用pandas再合适不过了,官方地址:https...:return: 处理完成后的pandas对象 """ # 读取整个csv文件 csv_data = pd.read_csv(file, ';') # 提取日期

    4K20
    领券