首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

AI帮助下,10分钟写一个word批量搜索替换的python程序2024.5.10

2、丢给AI 3、报错了,要加列名 4、完成,检查,WPS-word-审阅-比较 5、完整代码 import pandas as pd # 导入pandas库,用于处理Excel文件 from docx...import Document # 从python-docx库导入Document类,用于处理Word文档 # 定义函数读取_excel,用于读取Excel文件 def 读取_excel(文件路径...): # 使用pandas的read_excel函数读取文件,文件路径作为参数传入 数据表 = pd.read_excel(文件路径) # 返回读取到的数据表 return...数据表 # 定义函数替换_word文本,用于在Word文档中查找并替换指定文本 def 替换_word文本(word_文件路径, 替换映射): # 使用Document类打开Word文档...# 将数据表中的“搜索的文本”列和“要替换的文本”列转换成字典形式的替换映射 替换映射 = dict(zip(数据表['搜索的文本'], 数据表['要替换的文本'])) # 使用定义好的替换

16010

Spread for Windows Forms快速入门(14)---文件操作

默认的,当你保存为Excel文件时,无论Spread的数据模型中存储的是什么,都将以BIFF8格式写出到文件或者流中。...表头会被输出为冻结的行或者列。 ExcelOpenFlags或者ExcelSaveFlags枚举类型中的文档缓存选项允许用户打开,编辑,以及在不丢失高级文件内容和格式的情况下保存文件。...高级内容可以是宏,ActiveX控件, 数据连接,等等。 示例代码将Spread控件中的数据保存为Excel格式的文件并指定包含在输出中的行标题或列标题。...你可以使用 ExcelOpenFlags 枚举类型指定附加的打开选项。如果只有导入数据,这个枚举类型允许你决定冻结的列或者行如何被导入,并决定其他可选方面。...这个示例代码使用了FpSpread类中的方法打开了一整个Excel格式的文件,并且从指定的Excel表单中将数据加载到Spread控件中的指定表单。 //打开Excel文件的3号表单。

2.7K60
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    通宵翻译Pandas官方文档,写了这份Excel万字肝货操作!

    在 Pandas 中,如果未指定索引,则默认使用 RangeIndex(第一行 = 0,第二行 = 1,依此类推),类似于电子表格中的行标题/数字。...读取外部数据 Excel 和 pandas 都可以从各种来源以各种格式导入数据。 CSV 让我们从 Pandas 测试中加载并显示提示数据集,这是一个 CSV 文件。...在 Pandas 中,您使用特殊方法从/向 Excel 文件读取和写入。 让我们首先基于上面示例中的数据框,创建一个新的 Excel 文件。 tips.to_excel("....数据操作 1. 列操作 在电子表格中,公式通常在单个单元格中创建,然后拖入其他单元格以计算其他列的公式。在 Pandas 中,您可以直接对整列进行操作。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可

    19.6K20

    pandas操作excel全总结

    pandas读取excel pandas读取文件之后,将内容存储为DataFrame,然后就可以调用内置的各种函数进行分析处理。...index_col ,指定索引对应的列为数据框的行标签,默认 Pandas 会从 0、1、2、3 做自然排序分配给各条记录。...「两种查询方法的介绍」 「loc」 根据行,列的标签值查询 「iloc」 通过行号索引行数据,行号从0开始,逐次加1。...使用pandas表格数据常用的清洗方法: df.drop(['Name'], axis=1) # 删除列 df1.drop(labels=[1,3],axis=0) #删除行 df.drop([0,...df.dropna(axis = 1) # 删除有缺失的列 当然了,pandas除了读取csv和excel文件之外,读写数据的方法还有很多种,感兴趣的话,大家可以根据官方文档学习。

    22K44

    python数据分析——数据分析的数据的导入和导出

    index_col参数:该参数用于指定表格的哪一列作为DataFrame的行索引,从0开始计数。 nrows参数:该参数可以控制导入的行数,该参数在导入文件体积较大时比较有用。...skipfooter参数:该参数可以在导入数据时,跳过表格底部的若干行。 header参数:当使用Pandas的read_excel方法导入Excel文件时,默认表格的第一行为字段名。...网址不接受https,可以尝试去掉https中的s后爬取。 header:指定列标题所在的行。 index_col:指定行标题对应的列。 【例】爬取A股公司营业收入排行榜。...在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...2.3导入到多个sheet页中 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx

    18710

    一文讲述Pandas库的数据读取、数据获取、数据拼接、数据写出!

    其实Pandas能实现的功能,远远不止这些,关于利用该库如何实现数据清晰和图表制作,不是本书的研究范围,大家可以下去好好学习这个库。 在使用这个库之前,需要先导入这个库。...header=None,主要针对没有标题行的excel文件,系统不会将第一行数据作为标题,而是默认取一个1,2,3…这样的标题。 header=正整数值,指定哪一行作为标题行。...Excel数据写出 当我们将某个Excel文件中的表,进行读取、数据整理等一系列操作后,就需要将处理好的数据,导出到本地。...index:新导出到本地的文件,默认是有一个从0开始的索引列,设置index=False可以去掉这个索引列。 columns:选则指定列导出,默认情况是导出所有列。...ExcelWriter的使用 有时候我们需要将多excel表写入同一个工作簿,这个时候就需要借助Pandas中的pd.ExcelWriter()对象,默认对于xls使用xlwt引擎,对于xlsx使用openpyxl

    8.2K30

    Npoi导入导出Excel操作

    之前公司的一个物流商系统需要实现对订单的批量导入和导出,翻阅了一些资料,最后考虑使用NPOI实现这个需求。...POI是一个开源的Java读写Excel、WORD等微软OLE2组件文档的项目, 使用 NPOI 你就可以在没有安装 Office 或者相应环境的机器上对 WORD/EXCEL 文档进行读写。...使用NPOI的优势 1、您可以完全免费使用该框架 2、包含了大部分EXCEL的特性(单元格样式、数据格式、公式等等) 3、专业的技术支持服务(24*7全天候) (非免费) 4、支持处理的文件格式包括xls...} 第一种方法是默认文件的第一行是列名,第二行是数据。...导出Excel并且下载     思路是用NPOI创建文件存放在服务器上然后返回URL开始下载,借助一些方法可以方便进行以下操作 利用反射获得实体的所有属性(一个表的所有列): /// <summary

    4.5K111

    Npoi导入导出Excel操作

    之前公司的一个物流商系统需要实现对订单的批量导入和导出,翻阅了一些资料,最后考虑使用NPOI实现这个需求。...POI是一个开源的Java读写Excel、WORD等微软OLE2组件文档的项目, 使用 NPOI 你就可以在没有安装 Office 或者相应环境的机器上对 WORD/EXCEL 文档进行读写。...使用NPOI的优势 1、您可以完全免费使用该框架 2、包含了大部分EXCEL的特性(单元格样式、数据格式、公式等等) 3、专业的技术支持服务(24*7全天候) (非免费) 4、支持处理的文件格式包括xls...} 第一种方法是默认文件的第一行是列名,第二行是数据。...导出Excel并且下载     思路是用NPOI创建文件存放在服务器上然后返回URL开始下载,借助一些方法可以方便进行以下操作 利用反射获得实体的所有属性(一个表的所有列): /// <summary

    3.7K50

    使用R或者Python编程语言完成Excel的基础操作

    自定义排序:点击“排序和筛选”中的“自定义排序”,设置排序规则。 6. 筛选 应用筛选器:选中数据区域,点击“数据”选项卡中的“筛选”按钮。 筛选特定数据:在列头上的筛选下拉菜单中选择要显示的数据。...应用样式:使用“开始”选项卡中的“样式”快速应用预设的单元格样式。 11. 数据导入与导出 导入外部数据:使用“数据”选项卡中的“从文本/CSV”或“从其他源”导入数据。...数据导入和处理 从外部数据源导入:如从数据库、网站或文本文件导入数据。 Power Query:用于数据清洗、转换和加载的强大工具。...安全性和协作 保护工作表/工作簿:设置密码保护,限制对数据的访问和修改。 共享工作簿:允许多人同时编辑同一份Excel文档。 打印设置 页面布局:调整边距、方向、大小等。...更多数据行 ] 增加列 # 假设我们要基于已有的列增加一个新列 'Total',为 'Sales' 和 'Customers' 之和 for row in data[1:]: # 跳过标题行

    23810

    十一.数据分析之Numpy、Pandas、Matplotlib和Sklearn入门知识万字详解

    import networkx as nx DG = nx.DiGraph() #导入库并创建无多重边有向图 Gensim Gensim是一个从非结构的文本中挖掘文档语义结构的扩展包,它无监督地学习到文本隐层的主题向量表达...a[4:, 4:]表示从第5行开始,获取后面所有行,同时列也是从第5列开始,获取到后面所有列的数据,输出结果为[[44,45],[54,55]]。...a[2::2,::2]表示从第3行开始获取,每次空一行,则获取第3、5行数据,列从头开始获取,也是各一列获取一个值,则获取第1、3、5列,结果为:[[20,22,24],[40,42,44]]。...#将数据写入excel文件,文件名为foo.xlsx df.to_excel('foo.xlsx', sheet_name='Sheet1') #从excel文件中读取数据 pd.read_excel...5行数据') print(data.head()) 调用Pandas扩展包的read_excel()函数读取“test15.xls”表格文件,参数Header=None表示不读取标题头,然后输出data

    3.2K11

    Python与Excel协同应用初学者指南

    电子表格数据的最佳实践 在开始用Python加载、读取和分析Excel数据之前,最好查看示例数据,并了解以下几点是否与计划使用的文件一致: 电子表格的第一行通常是为标题保留的,标题描述了每列数据所代表的内容...将Excel文件作为Pandas数据框架加载 Pandas包是导入数据集并以表格行-列格式呈现数据集的最佳方法之一。...这将在提取单元格值方面提供很大的灵活性,而无需太多硬编码。让我们打印出第2列中包含值的行的值。如果那些特定的单元格是空的,那么只是获取None。...可以在下面看到它的工作原理: 图15 已经为在特定列中具有值的行检索了值,但是如果要打印文件的行而不只是关注一列,需要做什么? 当然,可以使用另一个for循环。...可以使用Pandas包中的DataFrame()函数将工作表的值放入数据框架(DataFrame),然后使用所有数据框架函数分析和处理数据: 图18 如果要指定标题和索引,可以传递带有标题和索引列表为

    17.4K20

    如何用 Python 执行常见的 Excel 和 SQL 任务

    导入数据 你可以导入.sql 数据库并用 SQL 查询中处理它们。在Excel中,你可以双击一个文件,然后在电子表格模式下开始处理它。...,使用这个方法所能导入完整的文件格式清单是在 Pandas 文档中。你可以导入从 CSV 和 Excel 文件到 HTML 文件中的所有内容!...轻松地使用它来快速查看数据集,而无需加载整个数据集!如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ?...在 Pandas 中,这样做的方式是rename 方法。 ? 在实现上述方法时,我们将使用列标题 「gdppercapita」 替换列标题「US $」。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。

    10.8K60

    用Python执行SQL、Excel常见任务?10个方法全搞定!

    01 导入数据 你可以导入.sql 数据库并用 SQL 查询中处理它们。在Excel中,你可以双击一个文件,然后在电子表格模式下开始处理它。...使用这个方法所能导入完整的文件格式清单是在 Pandas 文档中。你可以导入从 CSV 和 Excel 文件到 HTML 文件中的所有内容!...轻松地使用它来快速查看数据集,而无需加载整个数据集!如果要查看特定数量的行,还可以在 head() 方法中插入行数。 ? ?...在 Pandas 中,这样做的方式是rename 方法。 ? 在实现上述方法时,我们将使用列标题 「gdp_per_capita」 替换列标题「US $」。...Pandas 和 Python 共享了许多从 SQL 和 Excel 被移植的相同方法。可以在数据集中对数据进行分组,并将不同的数据集连接在一起。你可以看看这里的文档。

    8.3K20

    手把手教你做一个“渣”数据师,用Python代替老情人Excel

    使用skiprows和header之类的函数,我们可以操纵导入的DataFrame的行为。 ? 6、导入特定列 使用usecols参数,可以指定是否在DataFrame中导入特定的列。 ?...二、查看的数据的属性 现在我们有了DataFrame,可以从多个角度查看数据了。Pandas有很多我们可以使用的功能,接下来将使用其中一些来看下我们的数据集。...1、从“头”到“脚” 查看第一行或最后五行。默认值为5,也可以自定义参数。 ? 2、查看特定列的数据 ? 3、查看所有列的名字 ? 4、查看信息 查看DataFrame的数据属性总结: ?...2、查看多列 ? 3、查看特定行 这里使用的方法是loc函数,其中我们可以指定以冒号分隔的起始行和结束行。注意,索引从0开始而不是1。 ? 4、同时分割行和列 ? 5、在某一列中筛选 ?...4、将总列添加到已存在的数据集 ? 5、特定列的总和,使用loc函数 ? 或者,我们可以用以下方法: ? 6、用drop函数删除行 ? 7、计算每列的总和 ?

    8.4K30

    Python 和 Jupyter 扩展的最新更新:2023 年 6 月版 Visual Studio Code

    (data_list, columns=["标题", "图片", "时间"]) # 使用 to_excel 方法导出数据到 excel 文件中,指定文件名和索引列 df.to_excel("...这段代码的目的是采集今日头条的首页,获取推荐热点,将 TOP100 条的标题、图片和时间进行整理,导出到 excel 文件,并使用 Jupyter Notebook 的一些特性显示进度条和图表。...然后,定义一个函数,用来采集指定网址的数据,并添加到列表中。...这个函数使用 requests 库发送 GET 请求,并使用代理 IP;使用 BeautifulSoup 库解析 HTML 文档,并提取热点新闻的标题、图片和时间;并将提取到的信息添加到列表中。...接着,定义另一个函数,用来导出数据到 excel 文件中。这个函数使用 pandas 库创建一个 DataFrame 对象,并使用 to_excel 方法导出数据到 excel 文件中。

    19120

    Python读取excel三大常用模块到底谁最快,附上详细使用代码

    这里一篇文档根本写不下,但是行哥想起来若干年前,在处理数据的时候最大的难题就是导入excel数据,因为后来的数据清洗,提取都可以一步步来做。...但是数据导入因为教程不一,文字编码不一,着实快成为我从入门到放弃的第一块门槛 所以本文介绍三种强大的python模块来读取excel,选用案例是之前分享过的分析2020年12000条python招聘数据...1.pandas matplotlib、numpy、pandas是入行数据分析的三个必须掌握的基础模块,这里介绍一下用pandas如何导入excel文件。...# 1.导入pandas模块 import pandas as pd # 2.把Excel文件中的数据读入pandas df = pd.read_excel('Python招聘数据(全).xlsx')...) # 4.获取列标题 print(df.columns) # 5.获取列行标题 print(df.index) # 6.制定打印某一列 print(df["工资水平"]) # 7.描述数据 print

    85.6K33

    Python 合并 Excel 表格

    需求一编码 模块准备就绪,首先是导入 pandas 模块,通过 read_excel 方法来读取表格内容。表 A 读取如下: ? 表 B 读取如下: ?...注意 concat 方法中有个参数是 axis,默认为 0 表示按行即纵向合并,此处我们没有做设置使用的是默认值: ?...因为需求要定位到特定某列,故通过 iloc 方法实现通过索引定位并提取某行某列数据,首先是 iloc[:,2] 获取 表 C 中的第三列(此处 ":" 代表所有行;2 代表由0开始的列索引值,即第三列)...以及 iloc[:,[0,1]] 获取 表 D 中的第一、二列(此处 ":" 代表所有行;[0,1] 代表由0开始的列索引值,即第一列和第二列): ?...批量在不同 PDF 中提取特定位置的数据插入到对应 Word 文档中 Python 办公小助手:读取 PDF 中表格并重命名 摘要:批量读取 PDF 中特定数据,并以读取到的数据重命名该 PDF 文件

    3.6K10

    再见 Excel,你好 Python Spreadsheets! ⛵

    在Mito中创建数据透视表同样非常简单,单击『数据透视』按钮, 然后选择行、列和值。...', nrows=100000) df Bamboolib:新建列&统计计算 如果我们要创建一个新列,我们可以在搜索栏上搜索『列命名』操作,然后键入列公式。...下图演示我们使用公式创建一个『价格』列 (revenue/quantity). 图片 Bamboolib:数据透视表 下面我们在搜索栏中输入『数据透视表』。...然后我们在数据行中按产品对数据进行分组,并使用『sum』作为聚合函数,整个操作如下图所示: 图片 Bamboolib:可视化&绘图 接下来,我们创建一个饼图。...图片 Bamboolib:信息/属性抽取 下面我们从『日期』列中提取属性,我们希望提取出月份,要完成这个操作,我们会将『日期』列的数据类型更改为 date(现在类型为 str),然后再提取属性。

    3.1K41

    Python3分析Excel数据

    使用列标题 使用列索引值 用pandas设置数据框,在方括号中列出要保留的列的索引值或名称(字符串)。...设置数据框和iloc函数,同时选择特定的行与特定的列。如果使用iloc函数来选择列,那么就需要在列索引值前面加上一个冒号和一个逗号,表示为这些特定的列保留所有的行。...用loc函数,在列标题列表前面加上一个冒号和一个逗号,表示为这些特定的列保留所有行。 pandas_column_by_name.py #!...当在每个数据框中筛选特定行时,结果是一个新的筛选过的数据框,所以可以创建一个列表保存这些筛选过的数据框,然后将它们连接成一个最终数据框。 在所有工作表中筛选出销售额大于$2000.00的所有行。...: 使用列索引值 使用列标题 在所有工作表中选取Customer Name和Sale Amount列 用pandas的read_excel函数将所有工作表读入字典。

    3.4K20

    Python数据分析的数据导入和导出

    在该例中,首先通过pandas库的read_csv方法导入sales.csv文件的前10行数据,然后使用pandas库的to_csv方法将导入的数据输出为sales_new.csv文件。...文件,在Sheet1中写入数据,不保存索引列,保存列名,数据从第3行第2列开始,合并单元格,使用utf-8编码,使用pandas的默认引擎。...另外,to_excel方法还支持其他参数,如startrow、startcol等,用于设置写入数据的起始行、起始列位置。详细使用方法可参考pandas官方文档。...示例2 【例】将sales.xlsx文件中的前十行数据,导出到sales_new.xlsx文件中名为df1的sheet页中,将sales.xlsx文件中的后五行数据导出到sales_new.xlsx文件中名为...解决该问题,首先在sales_new.xlsx文件中建立名为df1和df2的sheet页,然后使用pd.ExcelWriter方法打开sales_new.xlsx文件,再使用to_excel方法将数据导入到指定的

    26510
    领券