第一步 - 准备数据集 从 Kaggle 下载奥斯卡金像奖数据集,并将 CSV 文件移动到名为 "data" 的子目录中。...由于我们主要关注与 2023 年相关的奖项,让我们将其过滤出来并创建一个新的 Pandas 数据帧。同时,我们还将把类别转换为小写,并删除电影值为空的行。...这是一个关键的步骤,因为嵌入模型生成的令牌将帮助我们执行语义搜索,从数据集中检索具有相似含义的句子。...目标是从具有关键字引用的数据帧中获取前三个值。...现在我们可以将它注入到我们的提示中来增强上下文。 第四步 - 基于RAG构建提示 我们想确保标记数不超过模型支持的上下文长度。对于 GPT 3.5 ,上下文长度为 4K 。以下函数处理这一点。
在我把数据放入一个dataframe后,我删除了包含重复描述的行和有空价格的行。我还将数据限制在获得超过200条评论的葡萄酒品种上。 通过剔除评论数少于200的品种,我得到了54个葡萄酒品种。...按照三个步骤加载库、数据和DataFrame。 导入pandas和sqlite3库。 连接到sqlite文件。 将数据加载到一个pandas DataFrame中。...这是正常的。 一旦该过程完成,文本描述将被转换为长度为768的向量。我们可以检查长度和嵌入,以确保它看起来像预期的: ?...为了使向量更容易分析,使用numpy将数据从张量对象转换为列表对象,然后将列表添加到pandas DataFrame。...数据中有很多不同的类型散点图看起来就像宇宙背景辐射,但这没关系。将鼠标悬停在圆点上将显示更多信息。用户可以点击各种图标将其从图表中删除。 ?
25:最长最短单词 总时间限制: 1000ms 内存限制: 65536kB描述 输入1行句子(不多于200个单词,每个单词长度不超过100),只包含字母、空格和逗号。...单词由至少一个连续的字母构成,空格和逗号都是单词间的间隔。 试输出第1个最长的单词和第1个最短单词。 输入一行句子。输出两行输出: 第1行,第一个最长的单词。 第2行,第一个最短的单词。...样例输入 I am studying Programming language C in Peking University 样例输出 Programming I 提示如果所有单词长度相同,
有时候使用mne的metadata属性来存储相关数据特别有用,metadata使用pandas.DataFrame来封装数据。...其中每一行对应一个epoch,每一列对应一个epoch的元数据属性。列必须包含字符串、整数或浮点数。 在该数据集中,受试者在屏幕上看到单个单词,并记录每个单词对应的脑电图活动。...这使用了Pandas中的pandas.DataFrame.query()方法。任何有效的查询字符串都将起作用。...例如,看按单词长度和具体程度划分的单词: """ query = "is_long == '{0}' & is_concrete == '{1}'" evokeds = dict() for concreteness...下面比较不同字母长度(字母个数)单词所得到的诱发响应。
其实这个pandas教程,卷的很严重了,才哥,小P等人写了很多的文章,这篇文章是粉丝【古月星辰】投稿,自己学习过程中整理的一些基础资料,整理成文,这里发出来给大家一起学习。...切片时允许序号超过范围,用法包括: 1....使用传递的键作为最外层构建分层索引。如果通过了多个级别,则应包含元组。 levels: 序列列表,默认无。用于构建 MultiIndex 的特定级别(唯一值)。否则,它们将从密钥中推断出来。...可以是列名称、索引级别名称或长度等于 DataFrame 或 Series 长度的数组;right_on:来自正确 DataFrame 或 Series 的列或索引级别用作键。...可以是列名称、索引级别名称或长度等于 DataFrame 或 Series 长度的数组 left_index:如果True,则使用左侧 DataFrame 或 Series 中的索引(行标签)作为其连接键
使用pandas.DataFrame来封装数据。...其中每一行对应一个epoch,每一列对应一个epoch的元数据属性。列必须包含字符串、整数或浮点数。 在该数据集中,受试者在屏幕上看到单个单词,并记录每个单词对应的脑电图活动。...这使用了Pandas中的pandas.DataFrame.query()方法。任何有效的查询字符串都将起作用。...我们将在元数据对象中创建一个新列,并使用它生成许多试验子集的平均值。...例如,看按单词长度和具体程度划分的单词: """ query = "is_long == '{0}' & is_concrete == '{1}'" evokeds = dict() for concreteness
索引值也是持久的,所以如果你对 DataFrame 中的行重新排序,特定行的标签不会改变。 5. 副本与就地操作 大多数 Pandas 操作返回 Series/DataFrame 的副本。...在 Pandas 中,您需要更多地考虑控制 DataFrame 的显示方式。 默认情况下,pandas 会截断大型 DataFrame 的输出以显示第一行和最后一行。...pandas 通过在 DataFrame 中指定单个系列来提供矢量化操作。可以以相同的方式分配新列。DataFrame.drop() 方法从 DataFrame 中删除一列。...列的选择 在Excel电子表格中,您可以通过以下方式选择所需的列: 隐藏列; 删除列; 引用从一个工作表到另一个工作表的范围; 由于Excel电子表格列通常在标题行中命名,因此重命名列只需更改第一个单元格中的文本即可...查找字符串长度 在电子表格中,可以使用 LEN 函数找到文本中的字符数。这可以与 TRIM 函数一起使用以删除额外的空格。
在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串)的不同方法: 是否包含一系列字符 求字符串的长度 判断以特定的字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列的出现次数 首先我们导入库和数据...import pandas as pd df = pd.read_csv("example.csv") df 我们这个样例的DataFrame 包含 6 行和 4 列。...我们将使用不同的方法来处理 DataFrame 中的行。第一个过滤操作是检查字符串是否包含特定的单词或字符序列,使用 contains 方法查找描述字段包含“used car”的行。...但是要获得pandas中的字符串需要通过 Pandas 的 str 访问器,代码如下: df[df["description"].str.contains("used car")] 但是为了在这个DataFrame...下一个方法是根据字符串的长度进行过滤。假设我们只对超过 15 个字符的描述感兴趣。
resource=download 获取的日本贸易统计数据。 该数据集包含了从1988年到2020年的贸易数据。它包含超过1亿行,CSV文件占用了4.5 GB的空间。...因此,这个数据集是用来说明本文概念的理想数据集。 将CSV文件加载到Pandas DataFrame中 首先,让我们从加载包含超过1亿行的整个CSV文件开始。...加载特定行 到目前为止,你已经学会了如何加载前n行,以及如何跳过CSV文件中的特定行。...行数据加载到了Pandas DataFrame中。...与前面的部分一样,缺点是在加载过程中必须扫描整个CSV文件(因此加载DataFrame需要22秒)。 总结 在本文中,介绍了许多从CSV文件加载Pandas DataFrame的技巧。
pandas中,从0开始行列索引 3.pandas 时间序列之pd.date_range() pd.date_range(python start=None,#开始时间 end=None...中series与DataFrame区别 Series是带索引的一维数组 Series对象的两个重要属性是:index(索引)和value(数据值) DataFrame的任意一行或者一列就是一个Series...df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name'].values得出的是...,比较灵活 DataFrame.drop(labels,axis=0,level=None,inplace=False,errors=’raise’) 删除特定的多列 # Import pandas package..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame
正因如此,可以从两个角度理解series和dataframe: series和dataframe分别是一维和二维数组,因为是数组,所以numpy中关于数组的用法基本可以直接应用到这两个数据结构,包括数据创建...检测各行是否重复,返回一个行索引的bool结果,可通过keep参数设置保留第一行/最后一行/无保留,例如keep=first意味着在存在重复的多行时,首行被认为是合法的而可以保留 删除重复值,drop_duplicates...由于该方法默认是按行进行检测,如果存在某个需要需要按列删除,则可以先转置再执行该方法 异常值,判断异常值的标准依赖具体分析数据,所以这里仅给出两种处理异常值的可选方法 删除,drop,接受参数在特定轴线执行删除一条或多条记录...,可通过axis参数设置是按行删除还是按列删除 替换,replace,非常强大的功能,对series或dataframe中每个元素执行按条件替换操作,还可开启正则表达式功能 2 数值计算 由于pandas...尤为强大的是,除了常用的字符串操作方法,str属性接口中还集成了正则表达式的大部分功能,这使得pandas在处理字符串列时,兼具高效和强力。例如如下代码可用于统计每个句子中单词的个数 ?
之前我们了解了numpy的一些基本用法,在这里简单的介绍一下pandas的数据结构。 一、Pandas数据结构 Pandas处理有三种数据结构形式:Series,DataFrame, index。...) """ 2)从ndarray创建一个序列: 如果数据是ndarray,则传递的索引必须具有相同的长度。...pandas.DataFrame( data, index, columns, dtype) data: 包含一维数组,列表对象, 或者是Series对象的字典对象 index :对于行标签,如果没有索引被传递...) """ 输出: Empty DataFrame Columns: [] Index: [] """ 2) 从列表中创建一个DataFrame DateFrame可以使用单个列表或者列表列表创建 data...(df2) print(df) """ 输出: a b 0 1 2 1 3 4 0 5 6 1 7 8 """ 删除行: # 删除行 df = df.drop(0) print(
DataFrame既有行索引也有列索引,其中的数据是以一个或多个二维块存放的,而不是列表、字典或别的一维数据结构。...(3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...也可以给某一列赋值一个列表或数组,其长度必须跟DataFrame长度相匹配。如果赋值的是一个Series,则对应的索引位置将被赋值,其他位置的值被赋予空值。...2、丢弃指定轴上的项 使用drop方法删除指定索引值对应的对象。 可以同时删除多个索引对应的值。 对于DataFrame,可以删除任意轴上(columns)的索引值。...(2)DataFrame与Series之间的运算 将DataFrame的每一行与Series分别进行运算。
Pandas 不仅允许我们加载电子表格,而且支持对加载内容进行预处理。 Pandas 有个核心类型叫 DataFrame。DataFrame 是表格型的数据结构。因此,我们可以将其当做表格。...我们可以通过使用特定行的值轻松筛选出行。比如我们想获取音乐类型(Genre)为值为 Jazz 行。 ? 再比如获取超过 180万听众的 艺术家。 ? 4....处理空值,Pandas 库提供很多方式。最简单的办法就是删除空值的行。 ? 除此之外,还可以使用取其他数值的平均值,使用出现频率高的值进行填充缺失值。...import pandas as pd # 将值填充为 0 pd.fillna(0) 5. 分组 我们使用特定条件进行分组并聚它们的数据,也是很有意思的操作。...从现有列中创建新列 通常在数据分析过程中,我们发现自己需要从现有列中创建新列,使用 Pandas 也是能轻而易举搞定。 ? - end -
DataFrame 是表格型的数据结构。因此,我们可以将其当做表格。DataFrame 是以表格类似展示,而且还包含行标签、列标签。另外,每列可以是不同的值类型(数值、字符串、布尔型等)。...我们可以通过使用特定行的值轻松筛选出行。比如我们想获取音乐类型(Genre)为值为 Jazz 行。 ? 再比如获取超过 180万听众的 艺术家。 ?...处理空值,Pandas 库提供很多方式。最简单的办法就是删除空值的行。 ? 除此之外,还可以使用取其他数值的平均值,使用出现频率高的值进行填充缺失值。...import pandas as pd # 将值填充为 0 pd.fillna(0) 5.分组 我们使用特定条件进行分组并聚它们的数据,也是很有意思的操作。...这也是 Pandas 库强大之处,能将多个操作进行组合,然后显示最终结果。 6.从现有列中创建新列 通常在数据分析过程中,我们发现自己需要从现有列中创建新列,使用 Pandas 也是能轻而易举搞定。
从现有的列创建新列: ? 从 DataFrame 里删除行/列 想要删除某一行或一列,可以用 .drop() 函数。...交叉选择行和列中的数据 我们可以用 .xs() 方法轻松获取到多级索引中某些特定级别的数据。比如,我们需要找到所有 Levels 中,Num = 22 的行: ?...当你使用 .dropna() 方法时,就是告诉 Pandas 删除掉存在一个或多个空值的行(或者列)。删除列用的是 .dropna(axis=0) ,删除行用的是 .dropna(axis=1) 。...请注意,如果你没有指定 axis 参数,默认是删除行。 删除列: ? 类似的,如果你使用 .fillna() 方法,Pandas 将对这个 DataFrame 里所有的空值位置填上你指定的默认值。...于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ? 如上所示,'A' 列的平均值是 2.0,所以第二行的空值被填上了 2.0。
如果你打算学习 Python 中的数据分析、机器学习或数据科学工具,大概率绕不开Pandas库。Pandas 是一个用于 Python 数据操作和分析的开源库。...:使用数字选择一行或多行:也可以使用列标签和行号来选择表的任何区域loc:1.3 过滤使用特定值轻松过滤行。...最简单的方法是删除缺少值的行:fillna()另一种方法是使用(例如,使用 0)填充缺失值。1.5 分组使用特定条件对行进行分组并聚合其数据时。...例如,按流派对数据集进行分组,看看每种流派有多少听众和剧目:Pandas 将两个“爵士乐”行组合为一行,由于使用了sum()聚合,因此它将两位爵士乐艺术家的听众和演奏加在一起,并在合并的爵士乐列中显示总和...1.6 从现有列创建新列通常在数据分析过程中,发现需要从现有列中创建新列。Pandas轻松做到。
这与本教程中提到的步骤相同。 步骤1 - 准备数据集 从 Kaggle 下载奥斯卡奖数据集,并将 CSV 文件移到名为 data 的子目录中。...由于我们最感兴趣的是与 2023 年相关的奖项,因此让我们对其进行过滤,并创建一个新的 Pandas data frame 。同时,我们也将类别转换为小写,删除电影值为空的行。...,让我们在 dataframe 中添加一个包含整个提名句子的新列。...例如,在 dataframe 的前两行中, “text” 列具有以下值: Austin Butler got nominated under the category, actor in a leading...这将成为吸收数据时生成嵌入的默认机制。 让我们将 Pandas dataframe 中的文本列转换为可以传递给 Chroma 的 Python 列表。
1.对表格类型的数据的读取和输出速度非常快。(个人对比excel和pandas,的确pandas不会死机....)在他的演示中,我们可以看到读取489597行,6列的数据只要0.9s。...DataFrame中删除或删除行。...,两行被删除,因为这两行包含相同的标签0。...dtypes 返回此对象中的dtypes。 empty 如果NDFrame完全为空[没有项目],则为true; 如果任何轴的长度为0。 ndim 轴/阵列尺寸的数量。...shape 返回表示DataFrame维度的元组。 size NDFrame中的元素数目。 values NDFrame的Numpy表示。 head() 返回前n行。 tail() 返回最后n行。
() / 03 / 使用Pandas进行数据选择 Pandas提供了各种数据选择方法,允许你从DataFrame或Series中提取特定数据。...)] # 通过标签选择特定的行和列 df.loc[row_labels, column_labels] # 通过整数索引选择特定的行和列 df.iloc[row_indices, column_indices...# 检查缺失值 df.isnull() # 删除有缺失值的行 df.dropna() # 用特定值填充缺失值 df.fillna(value) # 插入缺失值 df.interpolate()...它提供了各种函数来过滤、排序和分组DataFrame中的数据。...中的统计 Pandas提供了广泛的统计函数和方法来分析DataFrame或Series中的数据。
领取专属 10元无门槛券
手把手带您无忧上云