首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用过Excel,就会获取pandas数据框架中的值、行和列

标签:python与Excel,pandas 至此,我们已经学习了使用Python pandas来输入/输出(即读取和保存文件)数据,现在,我们转向更深入的部分。...在Python中,数据存储在计算机内存中(即,用户不能直接看到),幸运的是pandas库提供了获取值、行和列的简单方法。 先准备一个数据框架,这样我们就有一些要处理的东西了。...df.columns 提供列(标题)名称的列表。 df.shape 显示数据框架的维度,在本例中为4行5列。 图3 使用pandas获取列 有几种方法可以在pandas中获取列。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

19.2K60

Pandas 数据分析技巧与诀窍

2 数据帧操作 在本节中,我将展示一些关于Pandas数据帧的常见问题的提示。 注意:有些方法不直接修改数据帧,而是返回所需的数据帧。...在不知道索引的情况下检索数据: 通常使用大量数据,几乎不可能知道每一行的索引。这个方法可以帮你完成任务。因此,在因此,在“数据”数据框中,我们正在搜索user_id等于1的一行的索引。...indexRequired = data.index[data[‘user_id’] == 1] 检索与该索引对应的行: rowRequired = data.loc[indexRequired] 很简单...获取列的所有唯一属性值: 假设我们有一个整数属性user_id: listOfUniqueUserIDs = data[‘user_id’].unique() 然后你可以迭代这个列表,或者用它做任何你想做的事情...填充列缺少的值: 与大多数数据集一样,必须期望大量的空值,这有时会令人恼火。

11.5K40
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Pandas 学习手册中文第二版:1~5

    以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...创建数据帧期间的行对齐 选择数据帧的特定列和行 将切片应用于数据帧 通过位置和标签选择数据帧的行和列 标量值查找 应用于数据帧的布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章中的示例...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。...使用布尔选择来选择行 可以使用布尔选择来选择行。 当应用于数据帧时,布尔选择可以利用多列中的数据。...此外,我们看到了如何替换特定行和列中的数据。 在下一章中,我们将更详细地研究索引的使用,以便能够有效地从 pandas 对象内检索数据。

    8.3K10

    Pandas 秘籍:1~5

    二、数据帧基本操作 在本章中,我们将介绍以下主题: 选择数据帧的多个列 用方法选择列 明智地排序列名称 处理整个数据帧 将数据帧方法链接在一起 将运算符与数据帧一起使用 比较缺失值 转换数据帧操作的方向...最后,第 6 步显示了将数据帧与equals方法进行比较的正确方法,该方法始终返回布尔型标量值。 更多 所有比较运算符都有对应的方法,可以使用更多功能。...同时选择数据帧的行和列 直接使用索引运算符是从数据帧中选择一列或多列的正确方法。 但是,它不允许您同时选择行和列。...mask方法可以使从 2010 年开始制作的带有电影的行中的所有值都丢失。...mask方法的第一个参数是条件,该条件通常是布尔级数,例如criteria。 因为mask方法是从数据帧调用的,所以条件为False的每一行中的所有值都将变为丢失。

    37.6K10

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    也就是说,如果要基于索引选择行,而要基于整数位置选择列,请首先使用loc方法选择行,然后使用iloc方法选择列。 执行此操作时,如何选择数据帧的元素没有任何歧义。 如果您只想选择一列怎么办?...必须牢记的是,涉及数据帧的算法首先应用于数据帧的列,然后再应用于数据帧的行。 因此,数据帧中的列将与单个标量,具有与该列同名的索引的序列元素或其他涉及的数据帧中的列匹配。...处理 Pandas 数据帧中的丢失数据 在本节中,我们将研究如何处理 Pandas 数据帧中的丢失数据。 我们有几种方法可以检测对序列和数据帧都有效的缺失数据。...如果给定单个值,那么所有指示缺少信息的条目将被该值替换。dict可用于更高级的替换方案。dict的值可以对应于数据帧的列;例如, 可以将其视为告诉如何填充每一列中的缺失信息。...如果使用序列来填充数据帧中的缺失信息,则序列索引应对应于数据帧的列,并且它提供用于填充该数据帧中特定列的值。 让我们看一些填补缺失信息的方法。

    5.4K30

    精通 Pandas:1~5

    使用ndarrays/列表字典 在这里,我们从列表的字典中创建一个数据帧结构。 键将成为数据帧结构中的列标签,列表中的数据将成为列值。 注意如何使用np.range(n)生成行标签索引。...每个项目均对应一个数据帧结构。 major_axis:这是轴 1。每个项目对应于数据帧结构的行。 minor_axis:这是轴 2。每个项目对应于每个数据帧结构的列。...isin和所有方法 与前几节中使用的标准运算符相比,这些方法使用户可以通过布尔索引实现更多功能。 isin方法获取值列表,并在序列或数据帧中与列表中的值匹配的位置返回带有True的布尔数组。...由于并非所有列都存在于两个数据帧中,因此对于不属于交集的数据帧中的每一行,来自另一个数据帧的列均为NaN。...其余的非 ID 列可被视为变量,并可进行透视设置并成为名称-值两列方案的一部分。 ID 列唯一标识数据帧中的一行。

    19.2K10

    Pandas 秘籍:6~11

    由于两个数据帧的索引相同,因此可以像第 7 步中那样将一个数据帧的值分配给另一列中的新列。 更多 从步骤 2 开始,完成此秘籍的另一种方法是直接从sex_age列中分配新列,而无需使用split方法。...pivot_table方法与pivot不同,它对与index和columns参数中的列之间的交点相对应的所有值执行汇总。...在步骤 8 中,偏移别名使引用 DateOffsets 的方法更加紧凑。 与first方法相对应的是last方法,该方法从给定日期偏移的数据帧中选择最后n个时间段。...晚上 7 点 更多 此秘籍的最终结果是带有多重索引列的数据帧。 使用此数据帧,可以仅选择犯罪或交通事故。xs方法允许您从任何索引级别中选择一个值。...以下脚本创建了从 2000 年开始随机选择的 100 部电影的 IMDB 分数与年份的散点图。

    34K10

    精通 Pandas 探索性分析:1~4 全

    二、数据选择 在本章中,我们将学习使用 Pandas 进行数据选择的高级技术,如何选择数据子集,如何从数据集中选择多个行和列,如何对 Pandas 数据帧或一序列数据进行排序,如何过滤 Pandas 数据帧的角色.../img/80f5fbde-9419-48fe-8538-2d04b5aad7a9.png)] 从 Pandas 数据帧中选择多个行和列 在本节中,我们将学习更多有关从读取到 Pandas 的数据集中选择多个行和列的方法的信息...Pandas 有一种选择行和列的方法,称为loc。 我们将使用loc方法从之前创建的数据集中调用数据帧。.../img/63443760-aeaf-4f53-9190-78df352d94fc.png)] 从行和所有列的范围中选择值 在这里,我们将使用loc方法查看行和列序列中的值。...从 Pandas 数据帧中删除列 在本节中,我们将研究如何从 Pandas 的数据集中删除列或行。 我们将详细了解drop()方法及其参数的功能。

    28.2K10

    Pandas 学习手册中文第二版:6~10

    key==10099处的随机数的值(我明确选择了此值,因为它是DataFrame中的最后一行)。...总结 在本章中,我们更深入地研究了在 Pandas 中使用索引来组织和检索数据。 我们研究了许多有用的索引类型,以及它们如何与不同类型的数据一起使用以有效访问值而无需查询行中的数据。...执行数据随机抽样 随机采样是从随机位置的数据样本中选择值的过程。...Pandas 已经意识到,文件的第一行包含列名和从数据中批量读取到数据帧的名称。 读取 CSV 文件时指定索引列 在前面的示例中,索引是数字的,从0开始,而不是按日期。....apply()方法始终将提供的函数应用于Series,列或行中的所有项目。 如果要将函数应用于这些序列的子集,请首先执行布尔选择以过滤不希望处理的项目。

    2.3K20

    30 个 Python 函数,加速你的数据分析处理速度!

    我们减了 4 列,因此列数从 14 个减少到 10 列。 2.选择特定列 我们从 csv 文件中读取部分列数据。可以使用 usecols 参数。...isna 函数确定数据帧中缺失的值。...通过将 isna 与 sum 函数一起使用,我们可以看到每列中缺失值的数量。...它可以对顺序数据(例如时间序列)非常有用。 8.删除缺失值 处理缺失值的另一个方法是删除它们。以下代码将删除具有任何缺失值的行。...23.数据类型转换 默认情况下,分类数据与对象数据类型一起存储。但是,它可能会导致不必要的内存使用,尤其是当分类变量具有较低的基数。 低基数意味着列与行数相比几乎没有唯一值。

    9.4K60

    python数据分析——数据的选择和运算

    Python的Pandas库为我们提供了强大的数据选择工具。通过DataFrame的结构化数据存储方式,我们可以轻松地按照行或列进行数据的选择。...关键技术:多维数组中对行的选择,使用[ ]运算符只对行号选择即可,具体程序代码如下所示: 花式索引与布尔值索引 ①布尔索引 我们可以通过一个布尔数组来索引目标数组,以此找出与布尔数组中值为True...数据获取 ①列索引取值 使用单个值或序列,可以从DataFrame中索引出一个或多个列。...关键技术:可以通过对应的下标或行索引来获取值,也可以通过值获取对应的索引对象以及索引值。 具体程序代码如下所示: ②取行方式 【例】通过切片方式选取多行。...1.使用merge()方法合并数据集 Pandas提供了一个函数merge,作为DataFrame对象之间所有标准数据库连接操作的入口点。

    19310

    20个能够有效提高 Pandas数据分析效率的常用函数,附带解释和例子

    Sample Sample方法允许我们从DataFrame中随机选择数据。当我们想从一个分布中选择一个随机样本时,这个函数很有用。...Isin 在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。...对于行标签,如果我们不分配任何特定的索引,pandas默认创建整数索引。因此,行标签是从0开始向上的整数。与iloc一起使用的行位置也是从0开始的整数。...如果axis参数设置为1,nunique将返回每行中唯一值的数目。 13. Lookup 'lookup'可以用于根据行、列的标签在dataframe中查找指定值。假设我们有以下数据: ?...inner:仅在on参数指定的列中具有相同值的行(如果未指定其它方式,则默认为 inner 方式) outer:全部列数据 left:左一dataframe的所有列数据 right:右一dataframe

    5.7K30

    Python探索性数据分析,这样才容易掌握

    首先,让我们使用 .value_counts() 方法检查 ACT 2018 数据中 “State” 列的值,该方法按降序显示数据帧中每个特定值出现的次数: ?...为了比较州与州之间 SAT 和 ACT 数据,我们需要确保每个州在每个数据帧中都被平等地表示。这是一次创新的机会来考虑如何在数据帧之间检索 “State” 列值、比较这些值并显示结果。...我的方法如下图展示: ? 函数 compare_values() 从两个不同的数据帧中获取一列,临时存储这些值,并显示仅出现在其中一个数据集中的任何值。...为了与当前的任务保持一致,我们可以使用 .drop() 方法删除多余的列,如下所示: ? 现在所有的数据都具有相同的维度! 不幸的是,仍有许多工作要做。...这种类型转换的第一步是从每个 ’Participation’ 列中删除 “%” 字符,以便将它们转换为浮点数。下一步将把除每个数据帧中的 “State” 列之外的所有数据转换为浮点数。

    5K30

    Python pandas十分钟教程

    import pandas as pd pandas在默认情况下,如果数据集中有很多列,则并非所有列都会显示在输出显示中。....unique():返回'Depth'列中的唯一值 df.columns:返回所有列的名称 选择数据 列选择:如果只想选择一列,可以使用df['Group']....基本使用方法如下: df.loc[:,['Contour']]:选择'Contour'列的所有数据。 其中单冒号:选择所有行。 在逗号的左侧,您可以指定所需的行,并在逗号的右侧指定列。...df.loc[0:4,['Contour']]:选择“Contour”列的0到4行。 df.iloc[:,2]:选择第二列的所有数据。 df.iloc[3,:]:选择第三行的所有数据。...下面的代码将平方根应用于“Cond”列中的所有值。 df['Cond'].apply(np.sqrt) 数据分组 有时我们需要将数据分组来更好地观察数据间的差异。

    9.8K50

    强烈推荐Pandas常用操作知识大全!

    # 可视化 import matplotlib.pyplot as plt # 如果你的设备是配备Retina屏幕的mac,可以在jupyter notebook中,使用下面一行代码有效提高图像画质...pd.DataFrame(dict) # 从字典中,列名称的键,列表中的数据的值 导出数据 df.to_csv(filename) # 写入CSV文件 df.to_excel(filename)...(dropna=False) # 查看唯一值和计数 df.apply(pd.Series.value_counts) # 所有列的唯一值和计数 数据选取 使用这些命令选择数据的特定子集。...) df1.join(df2,on=col1,how='inner') # SQL样式将列 df1 与 df2 行所在的列col 具有相同值的列连接起来。'...返回均值的所有列 df.corr() # 返回DataFrame中各列之间的相关性 df.count() # 返回非空值的每个数据帧列中的数字 df.max()

    15.9K20

    图解pandas模块21个常用操作

    Pandas 的目标是成为 Python 数据分析实践与实战的必备高级工具,其长远目标是成为最强大、最灵活、可以支持任何语言的开源数据分析工具。...3、从字典创建一个系列 字典(dict)可以作为输入传递,如果没有指定索引,则按排序顺序取得字典键以构造索引。如果传递了索引,索引中与标签对应的数据中的值将被拉出。 ?...5、序列的聚合统计 Series有很多的聚会函数,可以方便的统计最大值、求和、平均值等 ? 6、DataFrame(数据帧) DataFrame是带有标签的二维数据结构,列的类型可能不同。...9、列选择 在刚学Pandas时,行选择和列选择非常容易混淆,在这里进行一下整理常用的列选择。 ? 10、行选择 整理多种行选择的方法,总有一种适合你的。 ? ? ?...13、聚合 可以按行、列进行聚合,也可以用pandas内置的describe对数据进行操作简单而又全面的数据聚合分析。 ? ?

    9K22

    Pandas系列 - 基本数据结构

    数组 字典 标量值 or 常数 二、pandas.DataFrame 创建DataFrame 列选择 列添加 列删除 pop/del 行选择,添加和删除 行切片 三、pandas.Panel() 创建面板...,list,constants 2 index 索引值必须是唯一的和散列的,与数据的长度相同 默认np.arange(n)如果没有索引被传递 3 dtype dtype用于数据类型 如果没有,将推断数据类型...数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 构造函数: pandas.DataFrame(data, index, columns...2 index 对于行标签,要用于结果帧的索引是可选缺省值np.arrange(n),如果没有传递索引值。 3 columns 对于列标签,可选的默认语法是 - np.arange(n)。...) major_axis axis 1,它是每个数据帧(DataFrame)的索引(行) minor_axis axis 2,它是每个数据帧(DataFrame)的列 pandas.Panel(data

    5.2K20

    Python数据分析常用模块的介绍与使用

    ((m,n))方法生成m行,n列的0值数组; 使用np.ones((m, n))方法生成m行,n列的填充值为1的数组; 使用np. eyes (m, n)方法生成m行,n列的对角线位置填充为1的矩阵;...Series:Series是一维的标记数组,类似于一维数组或者一列数据。它由一组数据和与之相关的标签(索引)构成。可以通过索引对数据进行选择和过滤。...它由一组有序的列组成,每个列可以是不同的数据类型(数值、字符串、布尔值等)。可以通过行和列的标签进行选择和过滤。...行 describe() 返回所有数值列的统计信息,即返回DataFrame各列的统计摘要信息,如平均值、最大值、最小值等 max(axis=0) /min(axis = 0) 默认列方向各列的最大/最小值...info() 对所有数据进行简述,即返回DataFrame的信息,包括每列的数据类型和非空值的数量 isnull() 检测空值,返回一个元素类型为布尔值的DataFrame,当出现空值时返回True,

    32310

    数据导入与预处理-课程总结-04~06章

    header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...duplicated()方法检测完数据后会返回一个由布尔值组成的Series类对象,该对象中若包含True,说明True对应的一行数据为重复项。...,包括: 实体识别 冗余属性识别 元组重复等 3.2 基于Pandas实现数据集成 pandas中内置了许多能轻松地合并数据的函数与方法,通过这些函数与方法可以将Series类对象或DataFrame

    13.1K10

    Pandas DataFrame创建方法大全

    Pandas是Python的数据分析利器,DataFrame是Pandas进行数据分析的基本结构,可以把DataFrame视为一个二维数据表,每一行都表示一个数据记录。...创建Pandas数据帧的六种方法如下: 创建空DataFrame 手工创建DataFrame 使用List创建DataFrame 使用Dict创建DataFrme 使用Excel文件创建DataFrame...上面的代码创建了一个3行3列的二维数据表,结果看起来是这样: ? 嗯,所有数据项都是NaN。...容易注意到,字段的键对应成为DataFrame的列,而所有的值对应数据。 记住这个对应关系。 现在假设我们要创建一个如下形状的DataFrame: ?...由于列名为Fruits、Quantity和Color,因此对应的字典也应当 有这几个键,而每一行的值则对应字典中的键值,字典应该是 如下的结构: fruits_dict = { 'Fruits':['Apple

    5.8K20
    领券