前面我写过一篇关于plotly的文章,简要介绍了一下关于plotly的画图架构,参考链接:
Plotly是一个非常著名且强大的开源数据可视化框架,它通过构建基于浏览器显示的web形式的可交互图表来展示信息,可创建多达数十种精美的图表和地图,本文就将以jupyter notebook为开发工具,详细介绍Plotly的基础内容。
经常利用Python进行数据可视化的朋友一定用过或听说过plotly这样的神器,我在(数据科学学习手札43)Plotly基础内容介绍中也曾做过非常详细的介绍,其渲染出的图像以浏览器为载体,非常精美,且绘制图像的自由程度堪比ggplot2,其为R也提供了接口,在plotly包中,但对于已经习惯用ggplot2进行可视化的朋友而言,自然是不太乐意转向plotly的学习,有趣的是plotly的R包中有着函数ggplotly(),可以将ggplot2生成的图像转换为交互式的plotly图像,且还可以添加上ggplot2原生图像中无法实现的交互标签,最重要的是其使用方法非常傻瓜式,本文就将结合几个小例子来介绍ggplotly()的神奇作用;
如果您了解并使用上面提到的库,那么您就处于进化的正确轨道上。它们可以帮助生成一些令人拍案的可视化效果,语法也不难。一般来说,我更喜欢Plotly+Cufflinks和 D3.js. 以下详细道来:
数据可视化的工具和程序库已经极大丰盛,当你习惯其中一种或数种时,你会干得很出色,但是如果你因此而沾沾自喜,就会错失从青铜到王者的新工具和程序库。如果你仍然坚持使用Matplotlib(这太神奇了),Seaborn(这也很神奇),Pandas(基本,简单的可视化)和Bokeh,那么你真的需要停下来了解一下新事物了。例如,python中有许多令人惊叹的可视化库,而且通用化程度已经很高,例如下面这五个:
要开始使用 Dash Bio,请使用 pip install dash_bio 安装,然后转到 Dash Bio 的文档: http://dash.plot.ly/dash-bio
https://aroussi.com/post/python-yahoo-finance
对于等高线,大家都是比较熟悉的,因为日常生活中遇到的山体和水面,都可以用一系列的等高线描绘出来。而等高面,顾名思义,就是在三维空间“高度一致”的曲面。当然了,在二维平面上我们所谓的“高度”实际上就是第三个维度的值,但是三维曲面所谓的“高度”,实际上我们可以理解为密度。“高度”越高,“密度”越大。
简介 在Python的世界里,可视化你的数据有多种选择。由于这种多样性,决定何时使用哪一个确实是种挑战。这篇文章包含由更受欢迎的包中的一部分制作的示例,并说明如何使用它们创建一个简单的条形图。我将使用: Pandas Seaborn ggplot Bokeh pygal Plotly 在例子中,我将使用Pandas处理数据并驱动可视化。大多数情况下这些工具可以在没有pandas的环境中运行,但是我认为pandas和可视化工具的结合非常普遍,这是最合适的开始之处。 Matplotlib怎么样? Matpl
Matplotlib是Python的主要绘图库,主要用于创建静态、动态以及交互式的可视化图形。我们可以用它来创建各种图表,如柱状图、直方图、散点图等。它的绘图方式既可以快速简单,也可以高度自定义化,非常灵活。
很多读者,学习python的就是希望通过数据分析、AI进行求职、转行或者是科研。所以行哥这里罗列了数据科学最受欢迎的十大Python数据科学库,看看有几个是你没掌握的:
上次 R 可视乎主要讲述了《Geospatial Health Data》[1]一书中关于空间地理数据可视化用 R 包制作地图的基础内容,参见 R可视乎|空间地理数据可视化(1)。本篇将继续介绍空间地理数据可视化的 R 包和函数。
即使是知识渊博的数据科学家也能提升他们的技术水平。当谈及到分析你编纂的数据时,有大量的工具可以帮助你更好的理解数据。我们与我们的数据科学指导者探讨了很久,最后总结出了一个包括5个数据科学工具的列表,同时这也是你在当今的社会形势下应该掌握的5个数据科学工具。 dedup dedup是一个Python库,使用机器学习快速的对结构化数据进行重复数据删除和实体解析。 数据科学家发现他们经常需要使用SELECT DISTINCT * FROM my_messy_dataset;不幸的是,现实世界中的数据集往往更加复杂
我们以前也发过很多关于数据可视化的文章。但是对于展示来说,如果你的图表能够动起来,那么他的展示效果要比静态的图有更多的冲击力,尤其是你需要向领导和客户展示的时候。所以在本篇文章整列了2个简单的代码片段,可以让你的图表动起来。
根据您的需求,我将这些方法的代码合并,并将预测结果保存到Excel文件的不同列中。请注意,预测方法的参数可能需要根据您的实际数据进行调整。此外,这里的代码仅适用于包含年月和销售金额两列的Excel文件。
数据可视化是数据科学和分析中不可或缺的一部分,而Python中的Matplotlib和Seaborn库为用户提供了强大的工具来创建各种可视化图表。本文将介绍如何使用这两个库进行数据可视化,并提供一些实用的代码示例和解析。
今天我们会介绍一下10个适用于多个学科的Python数据可视化库,其中有名气很大的也有鲜为人知的。
实际上,本文介绍了能从经典的《定量信息的视觉展示(The Visual Display of Quantitative Information)》(Edward Tufte)中学到的大部分知识,以及如何在Python中实现它。
需要注意的是,ployly绘图库与matplotlib绘图库、seaborn绘图库并没有什么关系。也就是说说plotly是一个单独的绘图库,有自己独特的绘图语法、绘图参数和绘图原理,因此我们需要单独学习它。
本文介绍了如何在Jupyter Notebook中创建交互内容。所谓内容,主要指可视化内容。不过我们很快就会看到,这里的可视化内容不仅包括通常的图表,还包括有助于探索数据的交互界面和动画。
本人在学习完制作双波源干涉现象的的二维Contour Plots图像之后,发现 plotly 还有3D 图像制作,也就是3D Surface Plots,这个更能展示双波源干涉现象的结果,果然学之。中间有些地方要说明一下,3D Surface Plots图表默认的底部是正方形,所以我采用了100*100的干涉图,然后加上一层透明的图标,让图像压扁,不然图标的上下限就是波动位置,看起来非常不雅观。
平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下。
本文由 PPV课 - korobas 翻译,未经许可,禁止转载! 原文翻译链接:http://pbpython.com/visualization-tools-1.html 一、介绍 在Python中,有很多数据可视化途径。因为这种多样性,造成很难选择。本文包括一些比较常见的可视化工具的样例,并将指导如何利用它们来创建简单的条形图。我将采用下面的工具来创建绘图数据示例: Pandas Seaborn ggplot Bokeh pygal Plotly 在实例中,我们利用pandas来操作数据,驱动
最近在做TOF相机相关的软件,近年来tof相机开始在手机,车载设备,VR等应用开始增多,产业也开始量化,是一个不错的3维相机的方向。
仪表板对于商业场景带来各种优点,通常使用称为BI工具的软件进行创建,但即使是免费可用的BI工具也往往有功能限制。
大家看惯R语言朴素的外表后,可能觉得一些高大上的气息好像和R语言没啥关系。今天我们为大家就展示下R语言在图像的交互中帅气一面。话不多说,进入我们的主题:网页可互动图像的绘制。首先我们还是需要安装一个R包:plotly。此包存在于R语言的CRAN上,所以直接安装就好。其依赖的包包括了shiny在内的大量绘图工具。最后我们还要加载另一个包DT。载入包
Plotly-express-16-绘制技巧(一) 本文中介绍的是利用Plotly绘图小技巧: 图片的保存:jupyter notebook下的保存和指定路径下的保存 柱状图的颜色改变(避免同样的颜色
把《Python生物信息学数据管理》这本书看完了,然后也写了一些笔记,和大家分享一下。
翻译:陈妍君 吴怡雯 校对:田晋阳 图表是一种美观而强大的工具,可以帮助我们探索和诠释这个世界。数百年来,人们一直在使用图表来解释跟数据相关的种种。为了向数据可视化的历史和图表的力量致敬,我们重新制作了史上最具代表性的7张图表。 这其中一部分是用现代的方法呈现出原稿,而另一些则致力于对原图的重新制作。这项工程由Edward Tufte发起。他是一位数据可视化的专家,已经对这些以及更多的图表写过相关文章。 ◆ ◆ ◆ 1. 俄法战争 1969年,Charles Minard做了一张图表,是1812年拿破仑
如果你是一名数据科学家或数据分析师,或者只是对这一行当感兴趣,你都应该了解下文中这些广受欢迎且非常实用的Python库。
参考链接:https://blog.csdn.net/m0_67790374/article/details/124137448
Orca is a pipeline orchestration tool that allows you to define dynamic data sources and explicitly connect them to processing functions. Orca has many features for working with Pandas data structures, but it can be used with anything.
近期对疫情数据进行可视化的内容比较多,今天我来用 Python 可视化申请 Plotly 对国外的疫情发展情况进行可视化,以项目实战的形式,在分析和了解国外疫情变化趋势的同时,加深大家对 Plotly 的学习应用。
注意此时实际上是将plotly的库文件写在了ipynb文件内部,因此保存后的ipynb文件会比较大,一般在5M以上.
用Python做数据分析离不开pandas,pnadas更多的承载着处理和变换数据的角色,pands中也内置了可视化的操作,但效果很糙。
我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。
很多人提到Tableau、Power BI等老牌可视化工具,这些工具确实引领了可视化的风潮,有开疆拓土之功。
市面上比较流行的数据库管理工具主要有Navicat、DBeaver、SQLyog等等,Navicat是其中的无冕之王,其拳头产品Navicat Premium可满足现今数据库管理系统(支持单一程序同時连接多达7种数据库:MySQL、MariaDB、SQL Server、SQLite、Oracle、MongoDB和PostgreSQL数据库。)的常用功能,包括存储过程、事件、触发器、函数、视图等。但是Navicat是收费软件,虽然可以破解,但是还是比较麻烦,而且在查看表结构和表内容时切换不是很方便。
终于在最近学习plotly中,让我在高级图表里发现了treemap,居然可以很好地满足我的需求,大家看以下就是最终效果图,是不是很赞!
init_notebook_mode()是离线使用plotly,不需注册账号即可使用,但是功能没有在线模式全,下面简单的介绍一下两种模式: plotly的两种模式
领取专属 10元无门槛券
手把手带您无忧上云