首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

从pyspark dataframe中获取值等于0的列

,可以通过以下步骤实现:

  1. 导入必要的库和模块:from pyspark.sql import SparkSession from pyspark.sql.functions import col
  2. 创建SparkSession对象:spark = SparkSession.builder.getOrCreate()
  3. 加载数据并创建dataframe:data = [(1, 0, 3), (4, 0, 6), (7, 8, 9)] df = spark.createDataFrame(data, ["col1", "col2", "col3"])
  4. 使用filter函数过滤出值等于0的列:zero_columns = [col_name for col_name in df.columns if df.filter(col(col_name) == 0).count() > 0]
  5. 打印结果:print(zero_columns)

以上代码将打印出值等于0的列的列名列表。

对于这个问题,可以使用pyspark的filter函数和count函数来实现。首先,我们使用filter函数过滤出每一列中值等于0的行,然后使用count函数统计符合条件的行数。如果行数大于0,说明该列中存在值等于0的元素,将该列名添加到结果列表中。

推荐的腾讯云相关产品:腾讯云弹性MapReduce(EMR),是一种大数据处理和分析的云服务,支持Spark等开源框架,可用于处理和分析大规模数据集。

腾讯云EMR产品介绍链接地址:https://cloud.tencent.com/product/emr

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

PySpark SQL——SQL和pd.DataFrame的结合体

导读 昨日推文PySpark环境搭建和简介,今天开始介绍PySpark中的第一个重要组件SQL/DataFrame,实际上从名字便可看出这是关系型数据库SQL和pandas.DataFrame的结合体,...,由下划线连接,例如some_funciton) 02 几个重要的类 为了支撑上述功能需求和定位,PySpark中核心的类主要包括以下几个: SparkSession:从名字可以推断出这应该是为后续spark...03 DataFrame DataFrame是PySpark中核心的数据抽象和定义,理解DataFrame的最佳方式是从以下2个方面: 是面向二维关系表而设计的数据结构,所以SQL中的功能在这里均有所体现...1)创建DataFrame的方式主要有两大类: 从其他数据类型转换,包括RDD、嵌套list、pd.DataFrame等,主要是通过spark.createDataFrame()接口创建 从文件、数据库中读取创建...),第二个参数则为该列取值,可以是常数也可以是根据已有列进行某种运算得到,返回值是一个调整了相应列后的新DataFrame # 根据age列创建一个名为ageNew的新列 df.withColumn('

10K20

PySpark |ML(转换器)

引 言 在PySpark中包含了两种机器学习相关的包:MLlib和ML,二者的主要区别在于MLlib包的操作是基于RDD的,ML包的操作是基于DataFrame的。...根据之前我们叙述过的DataFrame的性能要远远好于RDD,并且MLlib已经不再被维护了,所以在本专栏中我们将不会讲解MLlib。...01 ML简介 在ML包中主要包含了三个主要的抽象类:转换器、评估器、管道,本文先来介绍第一种抽象类——转换器。...02 转换器 在PySpark中,我们通常通过将一个新列附加到DataFrame来转换数据。 Binarizer() 用处:根据指定的阈值将连续变量转换为对应的二进制值。...+--------+------------+ |ASD VA c|[asd, va, c]| +--------+------------+ VectorSlicer() 用处:给定一个索引列表,从特征向量中提取值

11.7K20
  • 大数据开发!Pandas转spark无痛指南!⛵

    在 Pandas 和 PySpark 中,我们最方便的数据承载数据结构都是 dataframe,它们的定义有一些不同,我们来对比一下看看: Pandascolumns = ["employee","department...中可以指定要分区的列:df.partitionBy("department","state").write.mode('overwrite').csv(path, sep=';')注意 ②可以通过上面所有代码行中的...,dfn]df = unionAll(*dfs) 简单统计Pandas 和 PySpark 都提供了为 dataframe 中的每一列进行统计计算的方法,可以轻松对下列统计值进行统计计算:列元素的计数列元素的平均值最大值最小值标准差三个分位数...在 Pandas 中,要分组的列会自动成为索引,如下所示:图片要将其作为列恢复,我们需要应用 reset_index方法:df.groupby('department').agg({'employee'...我们经常要进行数据变换,最常见的是要对「字段/列」应用特定转换,在Pandas中我们可以轻松基于apply函数完成,但在PySpark 中我们可以使用udf(用户定义的函数)封装我们需要完成的变换的Python

    8.2K72

    Spark SQL

    Shark即Hive on Spark,为了实现与Hive兼容,Shark在HiveQL方面重用了Hive中HiveQL的解析、逻辑执行计划翻译、执行计划优化等逻辑,可以近似认为仅将物理执行计划从MapReduce...三、DataFrame的创建 从Spark2.0以上版本开始,Spark使用全新的SparkSession接口替代Spark1.6中的SQLContext及HiveContext接口来实现其对数据加载...SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。...people.json中创建一个DataFrame,名称为peopleDF,把peopleDF保存到另外一个JSON文件中,然后,再从peopleDF中选取一个列(即name列),把该列数据保存到一个文本文件中...中的每个元素都是一行记录,包含name和age两个字段,分别用p.name和p.age来获取值 >>> personsRDD=personsDF.rdd.map(lambda p:"Name: "+p.name

    8210

    独家 | PySpark和SparkSQL基础:如何利用Python编程执行Spark(附代码)

    第一步:从你的电脑打开“Anaconda Prompt”终端。 第二步:在Anaconda Prompt终端中输入“conda install pyspark”并回车来安装PySpark包。...在这篇文章中,处理数据集时我们将会使用在PySpark API中的DataFrame操作。...= 'ODD HOURS', 1).otherwise(0)).show(10) 展示特定条件下的10行数据 在第二个例子中,应用“isin”操作而不是“when”,它也可用于定义一些针对行的条件。...指定从括号中特定的单词/内容的位置开始扫描。...5.5、“substring”操作 Substring的功能是将具体索引中间的文本提取出来。在接下来的例子中,文本从索引号(1,3),(3,6)和(1,6)间被提取出来。

    13.7K21

    PySpark ML——分布式机器学习库

    进一步的,spark中实际上支持两个机器学习模块,MLlib和ML,区别在于前者主要是基于RDD数据结构,当前处于维护状态;而后者则是DataFrame数据结构,支持更多的算法,后续将以此为主进行迭代。...;而sklearn是单点机器学习算法库,支持几乎所有主流的机器学习算法,从样例数据、特征选择、模型选择和验证、基础学习算法和集成学习算法,提供了机器学习一站式解决方案,但仅支持并行而不支持分布式。...; DataFrame增加列:DataFrame是不可变对象,所以在实际各类transformer处理过程中,处理的逻辑是在输入对象的基础上增加新列的方式产生新对象,所以多数接口需指定inputCol和...03 pyspark.ml对比实战 这里仍然是采用之前的一个案例(武磊离顶级前锋到底有多远?),对sklearn和pyspark.ml中的随机森林回归模型进行对比验证。...具体数据和特征构建的过程可查阅前文了解,这里不再赘述。 选取球员各项能力数据,对PES中球员星级(取值为1-5,多分类任务)进行预测,训练集和测试集比例为7:3。

    1.7K20

    独家 | 一文读懂PySpark数据框(附实例)

    数据框的数据源 在PySpark中有多种方法可以创建数据框: 可以从任一CSV、JSON、XML,或Parquet文件中加载数据。...我们将会以CSV文件格式加载这个数据源到一个数据框对象中,然后我们将学习可以使用在这个数据框上的不同的数据转换方法。 1. 从CSV文件中读取数据 让我们从一个CSV文件中加载数据。...列名和个数(行和列) 当我们想看一下这个数据框对象的各列名、行数或列数时,我们用以下方法: 4. 描述指定列 如果我们要看一下数据框中某指定列的概要信息,我们会用describe方法。...查询不重复的多列组合 7. 过滤数据 为了过滤数据,根据指定的条件,我们使用filter命令。 这里我们的条件是Match ID等于1096,同时我们还要计算有多少记录或行被筛选出来。 8....原文标题:PySpark DataFrame Tutorial: Introduction to DataFrames 原文链接:https://dzone.com/articles/pyspark-dataframe-tutorial-introduction-to-datafra

    6K10

    Spark Extracting,transforming,selecting features

    ,下面是粗略的对算法分组: 提取:从原始数据中提取特征; 转换:缩放、转换、修改特征; 选择:从大的特征集合中选择一个子集; 局部敏感哈希:这一类的算法组合了其他算法在特征转换部分(LSH最根本的作用是处理海量高维数据的最近邻...,设置参数maxCategories; 基于列的唯一值数量判断哪些列需要进行类别索引化,最多有maxCategories个特征被处理; 每个特征索引从0开始; 索引类别特征并转换原特征值为索引值; 下面例子...列的DataFrame: userFeatures [0.0, 10.0, 0.5] userFeatures是一个包含3个用户特征的向量列,假设userFeatures的第一列都是0,因此我们希望可以移除它...,类似R中的公式用于线性回归一样,字符串输入列会被one-hot编码,数值型列会被强转为双精度浮点,如果标签列是字符串,那么会首先被StringIndexer转为double,如果DataFrame中不存在标签列...,输出标签列会被公式中的指定返回变量所创建; 假设我们有一个包含id、country、hour、clicked的DataFrame,如下: id country hour clicked 7 "US"

    21.9K41

    PySpark 数据类型定义 StructType & StructField

    虽然 PySpark 从数据中推断出模式,但有时我们可能需要定义自己的列名和数据类型,本文解释了如何定义简单、嵌套和复杂的模式。...PySpark StructType 和 StructField 类用于以编程方式指定 DataFrame 的schema并创建复杂的列,如嵌套结构、数组和映射列。...StructType--定义Dataframe的结构 PySpark 提供从pyspark.sql.types import StructType类来定义 DataFrame 的结构。...DataFrame.printSchema() StructField--定义DataFrame列的元数据 PySpark 提供pyspark.sql.types import StructField...中是否存在列 如果要对DataFrame的元数据进行一些检查,例如,DataFrame中是否存在列或字段或列的数据类型;我们可以使用 SQL StructType 和 StructField 上的几个函数轻松地做到这一点

    1.3K30

    PySpark︱DataFrame操作指南:增删改查合并统计与数据处理

    笔者最近需要使用pyspark进行数据整理,于是乎给自己整理一份使用指南。pyspark.dataframe跟pandas的差别还是挺大的。...— 2.2 新增数据列 withColumn— withColumn是通过添加或替换与现有列有相同的名字的列,返回一个新的DataFrame result3.withColumn('label', 0)...(参考:王强的知乎回复) python中的list不能直接添加到dataframe中,需要先将list转为新的dataframe,然后新的dataframe和老的dataframe进行join操作,...返回当前DataFrame中不重复的Row记录。...; Pyspark DataFrame的数据反映比较缓慢,没有Pandas那么及时反映; Pyspark DataFrame的数据框是不可变的,不能任意添加列,只能通过合并进行; pandas比Pyspark

    30.5K10

    PySpark 读写 JSON 文件到 DataFrame

    本文中,云朵君将和大家一起学习了如何将具有单行记录和多行记录的 JSON 文件读取到 PySpark DataFrame 中,还要学习一次读取单个和多个文件以及使用不同的保存选项将 JSON 文件写回...文件的功能,在本教程中,您将学习如何读取单个文件、多个文件、目录中的所有文件进入 DataFrame 并使用 Python 示例将 DataFrame 写回 JSON 文件。...注意: 开箱即用的 PySpark API 支持将 JSON 文件和更多文件格式读取到 PySpark DataFrame 中。...只需将目录作为json()方法的路径传递给该方法,我们就可以将目录中的所有 JSON 文件读取到 DataFrame 中。...应用 DataFrame 转换 从 JSON 文件创建 PySpark DataFrame 后,可以应用 DataFrame 支持的所有转换和操作。

    1.1K20

    Spark MLlib

    在这个过程中,MapReduce只能把中间结果存储到磁盘中,然后在下一次计算的时候重新从磁盘读取数据;对于迭代频发的算法,这是制约其性能的瓶颈。...二、机器学习流水线 (一)机器学习流水线概念 在介绍流水线之前,先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型。...例如,DataFrame中的列可以是存储的文本、特征向量、真实标签和预测的标签等。 Transformer:翻译成转换器,是一种可以将一个DataFrame转换为另一个DataFrame的算法。...技术上,Transformer实现了一个方法transform(),它通过附加一个或多个列将一个DataFrame转换为另一个DataFrame。...1、StringIndexer StringIndexer转换器可以把一列类别型的特征(或标签)进行编码,使其数值化,索引的范围从0开始,该过程可以使得相应的特征索引化,使得某些无法接受类别型特征的算法可以使用

    6900

    PySpark UD(A)F 的高效使用

    所有 PySpark 操作,例如的 df.filter() 方法调用,在幕后都被转换为对 JVM SparkContext 中相应 Spark DataFrame 对象的相应调用。...如果工作流从 Hive 加载 DataFrame 并将生成的 DataFrame 保存为 Hive 表,在整个查询执行过程中,所有数据操作都在 Java Spark 工作线程中以分布式方式执行,这使得...在UDF中,将这些列转换回它们的原始类型,并进行实际工作。如果想返回具有复杂类型的列,只需反过来做所有事情。...这意味着在UDF中将这些列转换为JSON,返回Pandas数据帧,并最终将Spark数据帧中的相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同的功能: 1)...x 添加到 maps 列中的字典中。

    19.7K31

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...、创建dataframe # 从pandas dataframe创建spark dataframe colors = ['white','green','yellow','red','brown','pink...# 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用 color_df.select('length').show...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...注意自定义函数的调用方式 # 0.创建udf自定义函数,对于简单的lambda函数不需要指定返回值类型 from pyspark.sql.functions import udf concat_func

    10.5K10

    来看看大厂如何基于spark+机器学习构建千万数据规模上的用户留存模型 ⛵

    )结果如下,ID类的属性有最多的取值,其他的字段属性相对集中。?...类别型取值分布我们来看看上面分析的尾部,分布比较集中的类别型字段的取值有哪些。...,以事件为基础(基于 "页 "列),我们需要执行额外的特征工程来定制我们的数据以适应我们的机器学习模型。?...无用字段列(我们会直接删除)firstName和lastName - 名字一般在模型中很难直接给到信息。method - 仅仅有PUT或GET取值,是网络请求类型,作用不大。...举例来说,在我们当前的例子中,如果我们将决策判定概率从0.5降低到0.25,可以把召回率提升到88.9%,但随之发生变化的是精度降低到47%。

    1.7K32

    【PySpark入门】手把手实现PySpark机器学习项目-回归算法

    分析数据的类型 要查看Dataframe中列的类型,可以使用printSchema()方法。让我们在train上应用printSchema(),它将以树格式打印模式。...预览数据集 在PySpark中,我们使用head()方法预览数据集以查看Dataframe的前n行,就像python中的pandas一样。我们需要在head方法中提供一个参数(行数)。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...train" Dataframe中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...直观上,train1和test1中的features列中的所有分类变量都被转换为数值,数值变量与之前应用ML时相同。我们还可以查看train1和test1中的列特性和标签。

    8.1K51

    手把手实现PySpark机器学习项目-回归算法

    分析数据的类型 要查看Dataframe中列的类型,可以使用printSchema()方法。让我们在train上应用printSchema(),它将以树格式打印模式。...预览数据集 在PySpark中,我们使用head()方法预览数据集以查看Dataframe的前n行,就像python中的pandas一样。我们需要在head方法中提供一个参数(行数)。...select方法将显示所选列的结果。我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...train" Dataframe中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...直观上,train1和test1中的features列中的所有分类变量都被转换为数值,数值变量与之前应用ML时相同。我们还可以查看train1和test1中的列特性和标签。

    8.5K70

    手把手教你实现PySpark机器学习项目——回归算法

    分析数据的类型 要查看Dataframe中列的类型,可以使用printSchema()方法。让我们在train上应用printSchema(),它将以树格式打印模式。...预览数据集 在PySpark中,我们使用head()方法预览数据集以查看Dataframe的前n行,就像python中的pandas一样。我们需要在head方法中提供一个参数(行数)。...我们还可以通过提供用逗号分隔的列名,从数据框架中选择多个列。...train" Dataframe中成功的添加了一个转化后的列“product_id_trans”,("Train1" Dataframe)。...直观上,train1和test1中的features列中的所有分类变量都被转换为数值,数值变量与之前应用ML时相同。我们还可以查看train1和test1中的列特性和标签。

    4.2K10

    大数据ETL实践探索(3)---- 大数据ETL利器之pyspark

    的大数据ETL实践经验 ---- pyspark Dataframe ETL 本部分内容主要在 系列文章7 :浅谈pandas,pyspark 的大数据ETL实践经验 上已有介绍 ,不用多说 ----...://www.elastic.co/guide/en/elasticsearch/hadoop/2.4/spark.html 在官网的文档中基本上说的比较清楚,但是大部分代码都是java 的,所以下面我们给出...或者针对某一列进行udf 转换 ''' #加一列yiyong ,如果是众城数据则为zhongcheng ''' from pyspark.sql.functions import udf from...,百万级的数据用spark 加载成pyspark 的dataframe 然后在进行count 操作基本上是秒出结果 读写 demo code #直接用pyspark dataframe写parquet...它不仅提供了更高的压缩率,还允许通过已选定的列和低级别的读取器过滤器来只读取感兴趣的记录。因此,如果需要多次传递数据,那么花费一些时间编码现有的平面文件可能是值得的。 ?

    3.9K20
    领券