首页
学习
活动
专区
圈层
工具
发布

Airflow 使用总结(二)

一、相同任务不同参数并列执行 最近几周一直在折腾 Airflow ,本周在写一个流水线任务,分为 4 个步骤,第一步会读取数据库 db ,然后是对读取的数据根据某个数据指标进行分组处理,同一个任务接收多组数据参数并列执行任务...,并发执行提高任务的执行效率,流程执行如下: 在代码上,任务函数返回一个列表 list ,下一个任务接收参数使用 expand 任务执行顺序没有变化,还是串行执行。...二、任务之间实现信息共享 一个 Dag 中在可能会包含多个调度任务,这些任务之间可能需要实现信息共享,即怎么把 task A 执行得到的结果传递给 task B,让 task B 可以基于 task A...注意,在opreator中必须要有provide_context=True,才能在operator内部通过context['ti'](获得当前 task 的 TaskInstance ,进行XCom push...注意: 如果 Airflow 部署在 k8s 上,就建议不要使用 xcom ,在 K8s 中运行自定义 XCom 后端会给 Airflow 部署带来更多的复杂性。

1.4K20

Airflow 实践笔记-从入门到精通二

DAG 配置表中的变量DAG_FOLDER是DAG文件存储的地址,DAG文件是定义任务流的python代码,airflow会定期去查看这些代码,自动加载到系统里面。...在前端UI中,点击graph中的具体任务,在点击弹出菜单中rendered tempalate可以看到该参数在具体任务中代表的值。...task可以通过在函数参数中定义**kwargs,或者使用get_current_context,获得该任务执行期间的上下文信息。...=dag, ) 在airflow2.0以后,用TaskFlow API以后,传参简单很多,就是当函数参数用即可。...自定义Operator的初始函数中,如果参数的赋值会需要用到模板变量,可以在类定义中通过template_fields来指定是哪个参数会需要用到模板变量。

3.4K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Airflow DAG 和最佳实践简介

    定义 DAG 在 Apache Airflow 中,DAG 代表有向无环图。DAG 是一组任务,其组织方式反映了它们的关系和依赖关系。...非循环特性特别重要,因为它很简单,可以防止任务陷入循环依赖中。Airflow 利用 DAG 的非循环特性来有效地解析和执行这些任务图。...数据库:您必须向 Airflow 提供的一项单独服务,用于存储来自 Web 服务器和调度程序的元数据。 Airflow DAG 最佳实践 按照下面提到的做法在您的系统中实施 Airflow DAG。...这意味着即使任务在不同时间执行,用户也可以简单地重新运行任务并获得相同的结果。 始终要求任务是幂等的:幂等性是良好 Airflow 任务的最重要特征之一。不管你执行多少次幂等任务,结果总是一样的。...避免将数据存储在本地文件系统上:在 Airflow 中处理数据有时可能很容易将数据写入本地系统。因此,下游任务可能无法访问它们,因为 Airflow 会并行运行多个任务。

    4.2K10

    大规模运行 Apache Airflow 的经验和教训

    在我们最大的应用场景中,我们使用了 10000 多个 DAG,代表了大量不同的工作负载。在这个场景中,平均有 400 多项任务正在进行,并且每天的运行次数超过 14 万次。...DAG 可能很难与用户和团队关联 在多租户环境中运行 Airflow 时(尤其是在大型组织中),能够将 DAG 追溯到个人或团队是很重要的。为什么?...下图显示了在我们最大的单一 Airflow 环境中,每 10 分钟完成的任务数。...在我们的生产 Airflow 环境中,每 10 分钟执行一次任务 存在许多资源争用点 在 Airflow 中,存在着很多可能的资源争用点,通过一系列实验性的配置改变,最终很容易出现瓶颈问题。...可以使用运算符中的 queue 参数将任务分配到一个单独的队列。

    3.8K20

    大数据调度平台Airflow(六):Airflow Operators及案例

    Airflow Operators及案例 Airflow中最重要的还是各种Operator,其允许生成特定类型的任务,这个任务在实例化时称为DAG中的任务节点,所有的Operator均派生自BaseOparator...在default_args中的email是指当DAG执行失败时,发送邮件到指定邮箱,想要使用airflow发送邮件,需要在$AIRFLOW_HOME/airflow.cfg中配置如下内容: [smtp]...如下: 二、​​​​​​​SSHOperator及调度远程Shell脚本 在实际的调度任务中,任务脚本大多分布在不同的机器上,我们可以使用SSHOperator来调用远程机器上的脚本任务。...airflow.operators.python import PythonOperator # python中 * 关键字参数允许你传入0个或任意个参数,这些可变参数在函数调用时自动组装为一个tuple...# python中 ** 关键字参数允许你传入0个或任意个含参数名的参数,这些关键字参数在函数内部自动组装为一个dict。

    9.2K55

    自动增量计算:构建高性能数据分析系统的任务编排

    从原理和实现来说,它一点并不算太复杂,有诸如于 从注解 DAG 到增量 DAG 设计 DAG (有向无环图,Directed Acyclic Graph)是一种常用数据结构,仅就 DAG 而言,它已经在我们日常的各种工具中存在...Loman 会在运行时,分析这个 Lambda,获得 Lambda 中的参数,随后添加对应的计算依赖。...零个或多个参数。 一个可选名称。 由此,我们才能获得缓存后的结果。...执行器,它处理正在运行的任务。在默认的 Airflow 安装中,这会在调度程序中运行所有内容,但大多数适合生产的执行程序实际上会将任务执行推送给工作人员。...其架构图如下: Apache Airflow 架构 不过、过了、还是不过,考虑到 Airflow 的 DAG 实现是 Python,在分布式任务调度并不是那么流行。

    1.8K21

    大数据调度平台Airflow(五):Airflow使用

    Airflow使用上文说到使用Airflow进行任务调度大体步骤如下:创建python文件,根据实际需要,使用不同的Operator在python文件不同的Operator中传入具体参数,定义一系列task...=3)注意:每个operator中可以传入对应的参数,覆盖DAG默认的参数,例如:last task中“retries”=3 就替代了默认的1。...任务参数的优先规则如下:①.显示传递的参数 ②.default_args字典中存在的值③.operator的默认值(如果存在)。...图片图片三、DAG catchup 参数设置在Airflow的工作计划中,一个重要的概念就是catchup(追赶),在实现DAG具体逻辑后,如果将catchup设置为True(默认就为True),Airflow...DAG文件配置在python代码配置中设置DAG对象的参数:dag.catchup=True或False。

    13.4K54

    Apache AirFlow 入门

    import BashOperator 默认参数 我们即将创建一个 DAG 和一些任务,我们可以选择显式地将一组参数传递给每个任务的构造函数,或者我们可以定义一个默认参数的字典,这样我们可以在创建任务时使用它...= timedelta(days=1) ) 任务(Task) 在实例化 operator(执行器)时会生成任务。...这比为每个构造函数传递所有的参数要简单很多。另请注意,在第二个任务中,我们使用3覆盖了默认的retries参数值。...任务参数的优先规则如下: 明确传递参数 default_args字典中存在的值 operator 的默认值(如果存在) 任务必须包含或继承参数task_id和owner,否则 Airflow 将出现异常...# 下面的这些操作都具有相同的效果: t1.set_downstream([t2, t3]) t1 >> [t2, t3] [t2, t3] << t1 请注意,在执行脚本时,在 DAG 中如果存在循环或多次引用依赖项时

    3.3K00

    AIRFLow_overflow百度百科

    :airflow webserver –p 8080 在安装过程中如遇到如下错误: 在my.cnf中加explicit_defaults_for_timestamp=1,然后重启数据库 5、Airflow...主要功能模块 下面通过Airflow调度任务管理的主界面了解一下各个模块功能,这个界面可以查看当前的DAG任务列表,有多少任务运行成功,失败以及正在当前运行中等: 在Graph View中查看DAG的状态...任务的调度如下图 显示DAG调度持续的时间 甘特图显示每个任务的起止、持续时间 】 配置DAG运行的默认参数 查看DAG的调度脚本 6、DAG脚本示例 以官网的脚本为例进行说明 from datetime...(5)Task脚本的调度顺序 t1 >> [t2, t3]命令为task脚本的调度顺序,在该命令中先执行“t1” 任务后执行“t2, t3”任务。 一旦Operator被实例化,它被称为“任务”。...实例化为在调用抽象Operator时定义一些特定值,参数化任务使之成为DAG中的一个节点。

    3.1K20

    Airflow配置和使用

    -05-14 最新版本的Airflow可从https://github.com/apache/incubator-airflow下载获得,解压缩按照安装python包的方式安装。...删除dag文件后,webserver中可能还会存在相应信息,这时需要重启webserver并刷新网页。...=/var/log/airflow-scheduler.err.log stdout_logfile=/var/log/airflow-scheduler.out.log 在特定情况下,修改DAG后,为了避免当前日期之前任务的运行...netstat -lntp | grep 6379 任务未按预期运行可能的原因 检查 start_date 和end_date是否在合适的时间范围内 检查 airflow worker, airflow...scheduler和 airflow webserver --debug的输出,有没有某个任务运行异常 检查airflow配置路径中logs文件夹下的日志输出 若以上都没有问题,则考虑数据冲突,解决方式包括清空数据库或着给当前

    14.6K71

    Airflow速用

    web界面 可以手动触发任务,分析任务执行顺序,任务执行状态,任务代码,任务日志等等; 实现celery的分布式任务调度系统; 简单方便的实现了 任务在各种状态下触发 发送邮件的功能;https://airflow.apache.org...核心思想 DAG:英文为:Directed Acyclic Graph;指 (有向无环图)有向非循环图,是想运行的一系列任务的集合,不关心任务是做什么的,只关心 任务间的组成方式,确保在正确的时间,正确的顺序触发各个任务...,准确的处理意外情况;http://airflow.apache.org/concepts.html#dags DAGs:多个任务集(多个DAG) Operator: 指 某些类型任务的模板 类;如 PythonOperator.../howto/operator/index.html# Task:当通过 Operator定义了执行任务内容后,在实例化后,便是 Task,为DAG中任务集合的具体任务 Executor:数据库记录任务状态...) 24 25 # dag默认参数 26 args = { 27 "owner": "Rgc", # 任务拥有人 28 "depends_on_past": False, # 是否依赖过去执行此任务的结果

    6.6K10

    任务流管理工具 - Airflow配置和使用

    -05-14 最新版本的Airflow可从https://github.com/apache/incubator-airflow下载获得,解压缩按照安装python包的方式安装。...删除dag文件后,webserver中可能还会存在相应信息,这时需要重启webserver并刷新网页。...=/var/log/airflow-scheduler.err.log stdout_logfile=/var/log/airflow-scheduler.out.log 在特定情况下,修改DAG后,为了避免当前日期之前任务的运行...任务未按预期运行可能的原因 检查 start_date 和end_date是否在合适的时间范围内 检查 airflow worker, airflow scheduler和airflow webserver...--debug的输出,有没有某个任务运行异常 检查airflow配置路径中logs文件夹下的日志输出 若以上都没有问题,则考虑数据冲突,解决方式包括清空数据库或着给当前dag一个新的dag_id airflow

    3.4K60

    【翻译】Airflow最佳实践

    定义在default_args中有助于避免一些类型错误之类的问题。 1.3 删除任务 不要从DAG中删除任务,因为一旦删除,任务的历史信息就无法再Airflow中找到了。...如果确实需要,则建议创建一个新的DAG。 1.4 通讯 在不同服务器上执行DAG中的任务,应该使用k8s executor或者celery executor。...在解释过程中,Airflow会为每一个DAG连接数据库创建新的connection。这产生的一个后果是产生大量的open connection。...测试DAG ---- 我们将Airflow用在生产环境中,应该让DAG接受充分的测试,以保证结果的是可以预期的。 2.1 DAG加载器测试 首先我们要保证的是,DAG在加载的过程中不会产生错误。...2.4 暂存(staging)环境变量 如果可能,在部署到生产环境运行起来之前,我们应该保持一个暂存环境去测试完整的DAG。需要确保我们的DAG是已经参数化了的,而不是在DAG中硬编码。

    3.8K10

    面试分享:Airflow工作流调度系统架构与使用指南

    一、面试经验分享在与Airflow相关的面试中,我发现以下几个主题是面试官最常关注的:Airflow架构与核心组件:能否清晰描述Airflow的架构,包括Scheduler、Web Server、Worker...如何设置DAG的调度周期、依赖关系、触发规则等属性?错误处理与监控:如何在Airflow中实现任务重试、邮件通知、报警等错误处理机制?...错误处理与监控在DAG或Operator级别设置重试次数、重试间隔等参数实现任务重试。通过email_on_failure、email_on_retry等参数开启邮件通知。...利用Airflow的Web UI、CLI工具(如airflow tasks test、airflow dag run)进行任务调试与手动触发。...结语深入理解Airflow工作流调度系统的架构与使用方法,不仅有助于在面试中展现出扎实的技术基础,更能为实际工作中构建高效、可靠的数据处理与自动化流程提供强大支持。

    1K10

    77_自动化脚本:Makefile与Airflow

    在2025年,Airflow的架构已支持更高效的大规模工作流处理,特别是在Kubernetes环境中的部署,使其能够更好地支持LLM等计算密集型任务。...3.3 任务定义与依赖管理 在Airflow中,任务通过操作符(Operator)定义,常见的操作符包括: PythonOperator:执行Python函数。...5.2 环境变量与配置管理 在Makefile和Airflow集成的过程中,环境变量和配置管理是一个重要的考虑因素。...使用Airflow的触发器规则:通过trigger_rule参数,控制任务在不同情况下的执行行为。 实现错误通知机制:通过EmailOperator或其他通知机制,及时报告任务失败。...案例研究:端到端LLM Pipeline实现 7.1 项目架构与组件 在本节中,我们将介绍一个端到端LLM Pipeline的实现案例,包括项目架构、Makefile和Airflow DAG的实现细节,

    16710

    助力工业物联网,工业大数据之服务域:AirFlow的架构组件【三十二】

    分配的Task,运行在Worker中 DAG Directory:DAG程序的目录,将自己开发的程序放入这个目录,AirFlow的WebServer和Scheduler会自动读取 airflow...将所有程序放在一个目录中 自动检测这个目录有么有新的程序 MetaData DataBase:AirFlow的元数据存储数据库,记录所有DAG程序的信息 小结 了解AirFlow的架构组件 知识点06:...对象 dagName = DAG( # 当前工作流的名称,唯一id 'airflow_name', # 使用的参数配置 default_args=default_args...to run):调度任务已生成任务实例,待运行 Queued (scheduler sent task to executor to run on the queue):调度任务开始在executor...执行前,在队列中 Running (worker picked up a task and is now running it):任务在worker节点上执行中 Success (task

    91830

    airflow—给DAG实例传递参数(4)

    我们需要在创建dag实例时传递参数,每个任务都可以从任务实例中获取需要的参数。...=dag) 包含logging的代码部分就是获取参数的地方 源码详解 每个DAG 实例都有一个上下文的概念,以context参数的形式会透传给所有的任务,以及所有任务的回调函数。...的值 实例参数使用pickle序列化存储在dag_run表中 字段类型如下 conf = Column(PickleType) 在执行PythonOperator时,会将上下文context参数,传递给回调函数中的...为True时,可以对上下文参数进行扩展 并将扩展后的self.op_kwargs传递给执行回调函数 在执行Operator时,就可以从上下文实例中获取DagRun实例 kwargs.get('dag_run...') 再从DagRun实例中获取conf参数,值为json对象类型 dag_run_conf = kwargs.get('dag_run').conf

    14.9K90
    领券