首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

【干货】钱塘数据特邀专家杜登斌——产业大数据创新应用【内含PPT】

产业大数据创新应用 ——“产业+大数据+金融”的产业升级转型创新思路 5月31日,中润普达(集团)公司董事长杜登斌在出席首届中国(杭州)工业大数据产业发展高峰论坛时,从自己的人生经历出发,带领与会者走近“互联网+”时代的大数据发展现状和未来。开篇“下一个百万亿商业时代在哪里”的探讨使大家充满期待;对“以数据资产为核心的大数据产业金融技术创新与应用”的分析稳扎稳打步步深入;“数据产业金融创新应用需要突破的问题”教人持续思考,关注更有价值的未来市场。 产业互联网将是下一个百万亿商业时代 首先,杜登斌谈了对“互

011
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    信贷风控模型搭建及核心风控模式分类

    一、当前风控模式现状 近年来,信用风险管理发展呈现出数据化、模型化、系统化、自动化和智能化的特点。传统的人工专家经验正逐步被模型与算法替代。 因此,科技较为领先的金融服务公司会选择采用模型方式完成对借款人的自动评估与审批。目前,对于信贷审核来说主要基于的风控模式为IPC、信贷工厂、大数据三种,每一种都有自己不同的侧重点。 二、最核心的风控模式分类 1.IPC模式 IPC模式起源于德国邮储银行,该模式重视实地调查和信息验证,主要通过对客户经理调查走访、信息交叉验证等方面。需要对客户经理进行至少2个月以上的专业技术培训,提升客户经理辨别虚假信息能力和编制财务报表的技能,从而防范信用风险。 IPC公司信贷技术的核心,是评估客户偿还贷款的能力。主要包括三个部分:一是考察借款人偿还贷款的能力,二是衡量借款人偿还贷款的意愿,三是银行内部操作风险的控制。每个部分,IPC都进行了针对性的设计。 这种模式主要运用于数据缺失、不具备财务管理环境、银行流水不完整,信用记录空白等的小微企业,其中,信贷员负责整个过程,从接受客户的申请到信用检查、现场信用、风险评估再到匹配贷款、付款催收和逾期付款。对信贷员的专业技能要求较高,信贷员对贷款全流程把关,一定程度上确保了项目的真实性。但又因为是以信贷员为核心,以信贷员的判断为依据,有一定的操作风险与道德风险。 2.信贷工厂模式 信贷工厂模式是新加坡淡马锡控股公司(Temasek Holdings)为解决小微企业信贷流程的弊端,推出了一种改善小微企业信贷流程的“信贷工厂”模式,“信贷工厂”意指银行像工厂标准化制造产品一样对信贷进行批量处理。 具体而言,就是银行对中小企业贷款的设计、申报、审批、发放、风控等业务按照“流水线”作业方式进行批量操作。在信贷工厂模式下,信贷审批发放首先要做到标准化,每个流程都有确定的人员分工,如客户经理、审批人员和贷后监督人员专业化分工。并且为了监控风险采用产业链调查方法,从不同角度对借贷企业进行交叉印证。 信贷工厂模式的特点是效率高,可以进行量化审核。过程之间环环相扣,对每个环节都有专人把控具体的把控。正因为这样,意味着需要消耗大量的人力成本,每个流程都需要对口的人员做支撑。 3.大数据模式 大数据风控模式是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。 大数据模式是基于互联网的兴起,该模式利用互联网数据的连通性,对触及到的风险的数据进行筛选,大大减少了人工审核的时间成本,同时也保证了数据结果的真实性。 三、P2P公司个人信贷评分卡模型 我们先讨论下如何从实际业务出发,以怎样的开发流程才能建立一个有效、有用、有价值的模型,希望读后能给你一定的启发。

    01

    2021全球分布式云大会,腾讯云存储斩获分布式存储运营领袖奖

    12月16日,以“引领分布式云变革 助力湾区数字经济”为主题的全球分布式云大会在深圳隆重召开,腾讯云存储凭借车载斗量的存储规模及用户量,在一众企业中脱颖而出,荣获“分布式存储运营领袖奖”。 因此,在2021 GDCC 全球分布式云大会现场中,由主办方发起了分布式奖项评选,通过初步遴选和网络投票以及业内最权威技术专家组最终评估,对腾讯云存储进行全方位的评定,最终评定腾讯云存储荣获“分布式存储运营领袖奖”,并在现场进行了奖项颁发。 获奖理由 腾讯云存储全球加速节点数覆盖五大洲50多个国家地区,中国第一家带宽峰

    02

    【金融数据】消费金融:大数据风控那点事?

    大数据风控同传统风控在本质上没有区别,主要区别在于风控模型数据输入的纬度和数据关联性分析。据统计,目前银行传统的风控模型对市场上70%的客户是有效的,但是对另外30%的用户,其风控模型有效性将大打折扣。 大数据风控作为传统风控方式补充,主要利用行为数据来实施风险控制,用户行为数据可以作为另外的30%客户风控的有效补充。大数据风险控制的作用就是从原来被拒绝的贷款用户中找到合格用户,识别出已经通过审核的高风险客户和欺诈客户。 一、银行信用风险控制的原理 金融行业中,银行是对信用风险依赖最强的一个主体,银行本质

    05
    领券